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Abstract

The practical implementation of dynamic digital twins in aerospace demands rapid multidisciplinary
design analysis and optimization (MDAO), yet this process is currently limited by slow, manual work-
flows. This paper introduces an agentic Generative Artificial Intelligence framework to automate the
synthesis of complex MDAO workflows from high-level natural language commands. The framework
employs a multi-agent architecture that autonomously generates, executes, and analyzes aerodynamic
optimization scripts using the OpenAeroStruct tool. This process establishes a robust digital thread
from requirement to result, providing a foundational component for the near-real-time model updates
demanded by the digital twin paradigm. Experiments demonstrate that the framework successfully
converges on optimized aircraft wing designs for given sets of constraints, showcasing accuracy and effi-
ciency superior to single-shot language model prompting. This work presents a foundational enabling
technology for the digital twin paradigm, providing a method to significantly accelerate the design

cycle and make the exploration of novel aircraft concepts more efficient and accessible.
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Optimization, Wing Design

1 Introduction

The digital twin paradigm is poised to reshape
aerospace engineering by moving beyond tra-
ditional simulation to enable dynamic, bidirec-
tional feedback between a physical asset and its
virtual representation. A key principle is that
the virtual model must be “fit-for-purpose”, tai-
lored to the specific decisions it supports rather
than being an exquisite replica of the physi-
cal system (Ferrari and Willcox 2024; Willcox
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and Segundo 2024). Realizing this vision requires
the ability to rapidly conduct multidisciplinary
design analysis and optimization (MDAO) to
update the virtual model. However, a signifi-
cant barrier remains in moving digital twins from
bespoke, artisanal products to robust, industrial-
scale applications (Niederer et al. 2021).

This scaling challenge is rooted in the com-
plexity of current engineering design processes.
While MDAO provides a systematic framework
for navigating complex multidisciplinary design



trade-offs (Martins and Lambe 2013), its adop-
tion is often hindered by a steep learning curve
and high domain expertise requirements. Conse-
quently, critical updates to the digital twin in
response to operational changes or new require-
ments remain “largely human-driven and man-
ual” (Ferrari and Willcox 2024). This bottleneck
fundamentally limits the dynamic, real-time cou-
pling that defines a true digital twin, forming a
significant barrier to the technology’s widespread
adoption.

Recent advancements in Generative Artifi-
cial Intelligence (GenAl), particularly Large Lan-
guage Models (LLMs), offer a promising path
to automate these complex workflows through
their capabilities in code generation (Jiang et al.
2024), natural language understanding (Raj et al.
2025), and complex problem-solving (Ramirez-
Rueda et al. 2024). These models are increasingly
being applied across engineering disciplines for
tasks such as hardware design and testing, giv-
ing answers towards questions in material science,
3D printing quality control, alloy discovery, and
heat exchanger design (Blocklove et al. 2024;
Buehler 2023; Farimani et al. 2024; Ghafarol-
lahi and Buehler 2024; Mishra et al. 2024). In
aerospace, LLMs have been explored for appli-
cations including non-safety-critical decision sup-
port in air traffic management, design space explo-
ration for unmanned aerial vehicles, automating
Computational Fluid Dynamics (CFD) workflows,
and agentic frameworks for controller gain tuning
(Abdulhak et al. 2024; Samplawski et al. 2025;
Pandey et al. 2025; Guo et al. 2024). Furthermore,
some LLMs have been enhanced with tool-using
capabilities (Qu et al. 2025), allowing interaction
with external resources for numerical computation
and Web-based information retrieval, while oth-
ers have employed augmented extraction (RAG)
to ground responses in large databases of tech-
nical and academic documents using advanced
embedding and retrieval methods (Cho et al.
2024).

Despite this progress, a critical gap per-
sists. Most current frameworks use agents to
execute well-defined, single-discipline tasks—such
as generating input files or tuning a handful of
parameters, or following procedural, pre-scripted
plans. (Wu et al. 2023; Hong et al. 2024; Zhang

et al. 2025). They are not yet equipped for the
creative, multidisciplinary analysis required to
formulate an MDAO problem from first principles.
Bridging this gap requires new methods that align
the general strengths of LLMs with the domain-
specific demands of advanced multidisciplinary
aerospace design and optimization.

To address the MDAO automation gap, this
paper introduces a framework that applies Gen-
erative Al to automate the use of physics-based
simulation tools. This approach is presented as a
practical application of Scientific Machine Learn-
ing (SciML), where the goal is not to replace the
solver, but to intelligently automate the entire
scientific workflow surrounding it. The frame-
work uses OpenAeroStruct (OAS) (Jasa et al.
2018), a Python-based tool built upon OpenM-
DAO (Gray et al. 2019) for aerostructural analysis
and optimization, as a case study. The frame-
work translates high-level design goals expressed
in natural language into executable code, inter-
prets simulation results, and facilitates iterative
design refinement by generating detailed reports
with RAG-enhanced analysis for human review
or automatic iteration. To ensure the reliability
and accuracy necessary for engineering tasks, the
proposed approach moves beyond single-shot gen-
eration, which can be prone to errors. Instead,
the framework employs a multi-agent architecture
where specialized agents collaborate on tasks such
as task understanding, code generation, and anal-
ysis, breaking down the complexity into smaller
and more manageable components while main-
taining transparency in each component.

While significant research in engineering
applications of LLMs has focused on models such
as OpenAl’s GPT family (OpenAI 2024) and
Meta’s Llama (Touvron et al. 2023), there is
less research specifically exploring Google’s Gem-
ini family (Google 2025) in aerospace engineering
design. This study explores Gemini due to its
cost-effectiveness and the availability of free API
access, making it well-suited for initial research
and open access. Gemini 2.0 Flash was selected
over more complex alternatives, such as Gem-
ini 2.5 Pro, to minimize computational overhead,
as higher-capacity models tend to consume sub-
stantially more tokens even for relatively simple
tasks.



The paper is structured as follows: Section 2
describes the agentic framework developed in this
work. Key results are presented in Section 3, fol-
lowed by a detailed discussion of the findings and
their broader implications in Section 4. Section 5
concludes the paper. Appendix A provides the
prompts used to guide the LLM agents in the
work.

2 Methodology

This section details the agentic GenAl frame-
work developed to automate the synthesis of
complex MDAO workflows, demonstrated through
the application of aerodynamic wing design. The
architecture is engineered to replace slow, man-
ual design processes with a dynamic, agent-driven
approach, establishing a robust digital thread
from a high-level natural language command to a
validated, optimized result. Using the OAS toolset
as a case study, the framework translates design
goals into executable Python code, interprets sim-
ulation results, and facilitates iterative refinement
through detailed multi-modal reporting.

2.1 Multi-Agent Framework
Architecture

The architecture of the multi-agent framework
is illustrated in Figure 1. The agents employed
within this architecture are categorized into two
distinct classes, which are color-coded in the
figure’s icons for clarity: general-purpose agents
(Red) and specialized coding agents (Blue). This
distinction is defined by their prompting style,
which is crucial for their function. As detailed
in Appendix (Section A), general-purpose agents,
responsible for tasks like reformulation and anal-
ysis, are instructed to output text in specific
formats (e.g., Python data structures and LaTeX),
while coding agents are provided with commented
sample code to ground their generation process,
and instructed to output structured, commented
code to prevent hallucinations.

As illustrated in Figure 1, the process is ini-
tiated by a user’s design query, which specifies
top-level requirements such as geometric wing con-
straints (e.g., span and area), design variables
(e.g., sweep angle, dihedral, and taper ratio), flow
conditions, optimization objectives, and desired

plotting outputs. This design query is processed
by a Task Reformulation Agent (a general-
purpose agent) which interprets the natural lan-
guage input, structures it into a deterministic
Python data structure, and validates the prob-
lem formulation to identify missing constraints or
potential errors at the outset.

Subsequently, a team of three specialized cod-
ing agents collaborates to generate the executable
script for the analysis: The Mesh Agent gener-
ates the code for the wing’s numerical mesh based
on the specified geometry, while the Geometry
Agent defines the wing’s geometry and sets up
the design variables to be explored during opti-
mization. Meanwhile, the Optimization Agent
writes the code that defines the objective function,
constraints, and solver settings for the MDAO
problem.

The integrated script is then executed, pro-
ducing numerical results and reporting in HTML
format. These reports are subsequently converted
to PDF, a format more suitable for multi-modal
LLM analysis, which allows the framework to
extract and select graphical information for inclu-
sion in the final summary. An Initial Analysis
Agent (a general-purpose agent) parses these out-
puts to extract key findings on optimization per-
formance, convergence, and design variable states.
It also provides additional observations regarding
factors such as manufacturability. These insights
are drawn from the model’s general knowledge,
which is enhanced with domain-specific informa-
tion from the RAG module. This module uses an
Information Retrieval Agent to query a vec-
torized knowledge base for the physical meaning of
the variables, as detailed in Section 2.3.2. Finally,
a Report Writing Agent (a general-purpose
agent) synthesizes these findings into a structured
LaTeX report that presents a clear summary of
the optimized design.

2.2 Foundational Model and
Rationale

The selection of the foundational LLM was based
on a trade-off analysis of performance, computa-
tional cost, and accessibility. This study utilizes
Gemini 2.0 Flash. This model was selected because
it provides robust capabilities in code generation
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Fig. 1: Multi-Agent LLM Framework for OpenAeroStruct (Red icons denote general purpose agents,

while blue icons denote specialized coding agents).

and technical reasoning while remaining com-
putationally efficient. Minimizing computational
overhead is critical for the framework’s intended
application within the digital twin paradigm,
which demands rapid, iterative design cycles.
The model’s efficiency and API accessibility are
expected to facilitate broader adoption by the aca-
demic and industrial aerospace communities upon
releasing the framework.

2.3 Error Mitigation and Domain
Grounding

To ensure the reliability necessary for engineering
applications, the framework incorporates two key
strategies for enhancing the accuracy and physical
understanding of the generated outputs.

2.3.1 Structured Data Transfer via
Schema

To maintain robustness and prevent data-passing
errors between agents, communication is gov-
erned by rigid output schemas. Each agent is
required to format its output as a structured
object, ensuring consistent and correct informa-
tion transfer throughout the workflow, as detailed

in Appendix A). For simple mathematical oper-
ations, the agents currently perform basic arith-
metic—division, multiplication, addition, and sub-
traction—such as independently calculating a
rectangular wing’s root chord from its area and
span. Testing has demonstrated their stability
and reliability for these straightforward calcula-
tions and has shown that no additional tools are
required for implementation.

2.3.2 Retrieval Augmentation
Generation (RAG)

To ground the agents’ analyses in correct physical
principles, the framework integrates a Retrieval-
Augmented Generation (RAG) module (see the
“Domain Knowledge Extractor” in Figure 1).
When the Initial Analysis Agent evaluates an opti-
mization result, the Information Retrieval Agent
accesses information regarding relevant physical
variables by querying a vector database. This pro-
cess involves a similarity search within a vector-
ized knowledge base containing persistent embed-
dings. The knowledge base is populated with
documentation on the governing physics of the
simulation tool—such as the relationship between
lift and angle of attack in the Vortex Lattice
Method, which the tool is built upon, as well as



notes on aerodynamic optimization. By augment-
ing the agent’s context with this domain-specific
information, the RAG module improves the accu-
racy of the final analysis, enabling more physi-
cally consistent design recommendations and more
effective troubleshooting of failed optimizations.

3 Results

To validate the proposed agentic framework, its
performance was evaluated on two representa-
tive aerostructural optimization test cases. These
cases were designed to assess the framework’s
end-to-end capabilities, from interpreting natu-
ral language commands to generating and ana-
lyzing executable MDAO workflows. The results
demonstrate the framework’s robustness and high-
light the advantages of a multi-agent architecture
over conventional single-shot prompting methods
towards existing publicly available LLM tools.

3.1 Framework Validation on
Aerostructural Test Cases

The framework was evaluated using two distinct
wing design optimization problems, which are
canonical examples in aerodynamic instruction.
The first case involved a standard drag minimiza-
tion problem for a given lift coefficient (C7, = 0.5),
with taper and sweep as design variables. In a
single, automated execution, the framework suc-
cessfully interpreted the requirements, generated
a valid and executable OpenAeroStruct script,
and performed the optimization without manual
intervention. The modular approach, where spe-
cialized agents generated distinct code segments,
produced accurate and well-commented scripts
that simplify potential debugging efforts. Follow-
ing the optimization run, the Initial Analysis
Agent correctly extracted key findings, identi-
fied that design variables remained within their
bounds, and confirmed that the resulting lift dis-
tribution approached the expected elliptical shape
for minimum induced drag . A comprehensive
report, automatically generated by the Report
Writing Agent, is available in the accompanying
repository hosted on the University of Michigan
IDEAS Lab Github page (Lee and Cinar 2025).

The second test case was designed to eval-
uate the framework’s diagnostic capabilities in

the event of a failed optimization. The problem
required minimizing drag at a very high lift coef-
ficient (CL, = 2.0), a condition that is physically
challenging to meet with the initial design vari-
able constraints. While the framework generated a
valid script, the optimization solver failed to con-
verge, as expected. This test highlights a critical
strength of the framework: its ability to analyze
and report on failed runs. The Initial Analysis
Agent correctly identified the failure, noted that
design variables had reached their specified lim-
its, and recommended problem reformulation and
constraint relaxation as corrective actions. This
diagnostic capability is essential for practical engi-
neering design, where identifying the root cause
of non-converging optimizations is a common and
time-consuming task. The failure also underscores
the importance of the RAG module, whose imple-
mentation helps to ground the agents with the
physical knowledge (e.g., the relationship between
angle of attack and lift generation) needed to
suggest more precise corrective actions, such as
expanding the bounds on the angle of attack for
lift increase.

3.2 Comparative Analysis of
Agentic Framework vs.
Single-Shot Prompting

To contextualize the performance of the multi-
agent framework, a comparative analysis was con-
ducted against Gemini 2.5 Pro, a highly ranked
reasoning model for intelligence that employs a
Chain-of-Thought (CoT) approach to problem-
solving. For a comprehensive comparison, the
same prompts were also tested using Cursor, an
Al-powered code editor that leverages a generative
model, to represent a different class of Al cod-
ing assistant (Anysphere, Inc. 2025). The results,
summarized in Table 1, highlight the fundamental
limitations of applying large, monolithic mod-
els to complex, multi-step engineering workflows,
and demonstrate the advantages of the proposed
framework.

When presented with the design prompt
alone, the single-shot model generated syntacti-
cally incorrect code that was a hybrid of Open-
MDAO and OpenAeroStruct syntax and was
therefore unrunnable. In a second attempt, pro-
viding the model with a correct sample script



led to arbitrary variable name changes, which
caused connection errors within the OpenMDAO
architecture, which resulted in uncompilable code.
Furthermore, attempting to provide the entire
OpenAeroStruct library as context to ground the
model exceeded its one million token limit, and
could not yield any runnable or analyzable results.

These findings underscore the value of the
proposed agentic framework. By decomposing
the complex task of MDAO workflow synthesis
into manageable sub-tasks handled by specialized
agents, the framework overcomes the brittleness
and context limitations of single-shot models. This
modular approach not only generates correct and
executable code but also automates the analysis of
results, achieving the entire workflow at a signif-
icantly lower computational cost and in less time
than a single, failed attempt by a large reasoning
model.

4 Discussion

The results demonstrate that the agentic GenAl
framework provides a robust and efficient method
for automating MDAO workflows from natu-
ral language inputs. This automation can be
viewed as a form of process order reduction,
where a complex, multi-step human-driven work-
flow is reduced to a single, agent-driven command.
While general-purpose multi-agent frameworks
like MetaGPT (Hong et al. 2024) are powerful for
software development, the key contribution of this
work is the design and application of a special-
ized, ‘fit-for-purpose’ agentic framework tailored
to the unique challenges of scientific computing
and digital twin construction. This specialization
is critical for navigating the specific syntax, object
model, and complex data-passing requirements
of a physics-based tool like OpenAeroStruct, a
task for which general-purpose agents are not
equipped.

This tailored approach successfully overcomes
the brittleness observed in single-shot LLMs when
faced with domain-specific tasks. Furthermore, its
capability to not only execute successful opti-
mizations, but also to diagnose and report failed
runs, constitutes a significant step towards cre-
ating more autonomous and resilient engineering
design tools.

Outcome

Code executable?

Prompt/Method

Successful
Failure: Syntactically incorrect code
Failure: Code with critical variable connection errors

Yes
No

Natural Language Prompt
Prompt Only (CoT)

This (Agentic) Framework
Gemini 2.5 Pro (Reasoning)

No

Prompt 4+ Sample Script (CoT)

Reasoning)

Failure: Exceeded context token limit

No

Prompt + Full OAS Codebase (CoT)

Prompt + Full OAS Codebase
Table 1: Comparison of MDAO Script Generation Approaches For the Test Case

Reasoning)

(
(

Gemini 2.5 Pro

Gemini 2.5 Pro

Cursor

Failure: Use of non-existent variables

No




By establishing a fully automated digital
thread from natural language requirement to opti-
mized result, this work serves as an enabling
technology for dynamic digital twins. A true digi-
tal twin requires that the virtual model be rapidly
updated in response to new data or changing
requirements. The framework presented herein
provides the mechanism for this rapid synthe-
sis, allowing the virtual model to be rebuilt and
re-optimized on demand. This tight, closed-loop
integration of a generative model with a physics-
based solver is a defining application of SciML,
moving beyond simple code generation to achieve
intelligent process automation.

While the current implementation focuses on
a specific set of aerodynamic optimizations, the
architecture is extensible. The presented results
serve as a strong proof-of-concept for a new class
of specialized Al-driven tools that can significantly
accelerate the design cycle for complex engineering
systems.

5 Conclusion

This paper presented a specialized generative
Al agentic framework designed to automate
the synthesis of complex MDAO workflows
from natural language commands. The multi-
agent architecture, tailored specifically for the
OpenAeroStruct toolset, successfully generates
and executes aerostructural optimization scripts,
demonstrating a resilience and fidelity superior to
single-shot LLM prompting.

The key contribution of this work is a “fit-for-
purpose” multi-agent framework that establishes a
robust digital thread from high-level requirements
to a validated, optimized design. By successfully
automating tasks that are challenging for general-
purpose agentic systems, this research provides a
foundational enabling technology for the digital
twin paradigm, offering a method to significantly
accelerate the design cycle and make the explo-
ration of novel aircraft concepts more efficient and
accessible.

This framework, developed as a proof-of-
concept, currently leverages a subset of OAS
capabilities. Users can primarily manipulate key
aerodynamic variables such as angle of attack,
taper ratio, span, dihedral angle, sweep angle,

chord distribution, and twist distribution, with lift
coefficient (C) and drag coefficient (Cp) as the
primary output variables. Future development will
focus on expanding the framework’s functionali-
ties both within OAS and in its integration with
other aerospace engineering tools. Improvements
within OAS include incorporating multi-point
optimization, structural components, and explicit
components for user-defined equations. Beyond
OAS, potential enhancements include incorporat-
ing more tools to support design and analysis of a
full aircraft.

Appendix A Selected
Prompts For
Instructing
Agents and
Sample Outputs

A selection of prompts used to guide the vari-
ous agents in the framework is provided below.
It is important to note that the structure of
the prompts generally follows a consistent for-
mat, which includes: (1) the goal assigned to the
language model, (2) a step-by-step breakdown of
tasks, (3) the expected outputs, (4) code examples
where applicable (for coding agents), and (5) sup-
plementary materials such as PDFs or retrieved
texts in cases involving RAG.

Reformulator Agent Prompt

Your goal is to rephrase the user’s input into a
format that OpenAeroStruct can understand and
output using the provided schema, which is an
object.

Your tasks are:

1. Read the user’s input.

2. Identify the key information and requirements.
3. Use the provided schema to structure your
response.

4. Generate a response that clearly outlines the
key requirements and constraints for the Ope-
nAeroStruct optimization process.

5. Ensure that the response is well-formatted and
easy to understand.

6. Use the format below to structure your response.

Include the following information in your response
as applicable:



Objective Function: Maximize or minimize objec-
tives.

Trim Condition: If applicable; for example, mini-
mize drag at C, = 0.5 or a = 3.0 deg.

Geometric Constraints: Wing area (S), root chord,
tip chord, aspect ratio, etc.

Design Variables: Sweep, twist, taper, chord, etc.
Baseline Wing Mesh: Unless specified, use a rect-
angular mesh. If using a common research model,
use CRM.

Optimization Algorithm: Unless specified, use
SLSQP.

Plotting Requirements: If any, otherwise state none.
Errors: Note any errors in the input, such as miss-
ing key information (e.g., no objective specified),
or if the number of constraints exceeds the number
of design variables.

Your goal is to implement the instructions provided
and write OpenAeroStruct mesh code. Follow the
instructions and the code samples carefully, and
output using the provided schema as text.

Your tasks are:

1. Read the inputs. You will be given the wing type
and geometrical configuration. If the requirements
call for a change, update the span, root chord, and
wing type, then output the code.

2. Identify the requirements.

3. Use the provided code sample to structure your
code.

4. Ensure that the response is well-formatted and
easy to understand.

You may need to perform basic math calculations
for mesh generation. For a rectangular wing, if
span and area are given, calculate the root chord
as follows: root_chord = area / span.

Follow the explained code sample provided. Do not
add new fields—directly edit the code and explain
any changes in the calculations and in the explana-
tion field.

Sample mesh code with commented instructions

Your goal is to follow the instructions provided and
write OpenAeroStruct geometry code. Carefully

follow the instructions and code samples, and out-
put using the provided schema as text.

Your tasks are:

1. Read the inputs. You will be given the vari-
ables that can be optimized. Update the geometry
preparation code and uncomment variables that
can be optimized.

2. Identify the requirements.

3. Use the provided code sample to structure your
code.

4. Ensure that the response is well-formatted and
easy to understand.

Follow the explained code sample provided. Do not
add new fields—directly edit the code and explain
your changes in the calculations and explanation
field.

Sample geometry code with commented instructions

Your goal is to follow the instructions provided and
write OpenAeroStruct optimization code. Care-
fully follow the instructions and code samples, and
output using the provided schema as text.

Your tasks are:

1. Read the inputs. You will be given the variables
that can be optimized. Update the optimization
code to include the variables for optimization.

2. Identify the requirements.

3. Use the provided code sample to structure your
code.

4. Ensure that the response is well-formatted and
easy to understand.

Sample optimization code with commented instructions

Information Retrieval Agent Prompt

Your goal is to provide a query to retrieve infor-
mation from a RAG system, using the provided
schema (an object) for your output.

You need to craft a query so that another agent
can use it to understand the physical variables
involved in optimization.



Your tasks are:

1. Read the refined user input.

2. Identify the variables used.

3. Write a query that will be used to retrieve infor-
mation from a RAG system. Include only the wing
geometry variables used in optimization. Ignore
variables not used in optimization.

4. Use the provided schema to structure your
response.

Example output:

Please provide information for the following vari-
ables used in aerodynamic wing optimization:
Taper ratio, Twist angle, Sweep angle, Lift coef-
ficient (CL), Wing area (S), Wing span (b), and
Drag.

Initial Analysis Agent Prompt

Your goal is to review the results of the
OpenAeroStruct optimization and provide rec-
ommendations. Output should use the provided
schema, which is an object. The initial problem
statement and two PDF reports of the results will
be provided.

Your tasks are:

1. Read the PDFs of the OpenAeroStruct opti-
mization results.

2. Identify the key information and results.

3. Use the provided schema to structure your
response.

Structure your response in four parts:

1) Analysis: Assess whether the optimization was
successful, and explain what the results mean.

2) Recommendations: Suggest next steps, such as
further optimizations, adjustments to design vari-
ables, or other considerations. Evaluate whether
the results are reasonable; if not, explain why.

3) Optimization Performance: Discuss the com-
putational performance, including the number of
iterations, computation time, and, if unconverged,
suggest an alternative optimization algorithm.

4) Unrelated Observations: Note any other obser-
vations not directly related to the optimization,
such as manufacturability or non-design variables.

Include the following details:

1) Does the optimization achieve the objectives? If
not, why? State numerical values of the objective.
2) List key design variables and their values: Do

they reach their limits? Are they physically reason-
able?

3) Analyze graphical plots: Do they make sense?
Are there anomalies? For drag minimization, is lift
distribution elliptical? How close is it to ideal?

4) Report computational performance.

Report Writing Agent Prompt

Your goal is to rewrite the LLM output into a
report format, using the schema provided (which is
an object). You will be given the textual analysis
from another LLM.

Your tasks are:

1. Read the analysis and recommendations.

2. Identify the key information and requirements.
3. Use the provided schema to structure your
response.

4. Generate a response that answers the user’s
question in paragraph form, formatted in properly
written LaTeX.

Use all the information given to write a detailed
analysis of the results and recommendations.

Please include this figure in the report:

The file path is ”Figures/Optimized-Wing.pdf”,
which contains the optimized wing visualization.
Reference this figure in your analysis, as it will also
be provided.
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