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Abstract—Hybrid-Electric Aircraft (HEA) present a potential
pathway to enhance propulsive efficiency and reduce operating
costs in regional airline operations. This study introduces a
trajectory-adaptive power management strategy that optimizes
allocation of electric and gas turbine engine power across sequen-
tial daily flights while addressing operational constraints such
as limited gate charging durations and available ground time.
HEA models are developed using physics-based and data-driven
methods within the open-source Future Aircraft Sizing Tool
(FAST). In contrast to prior studies that rely on fixed power splits
or single-mission strategies, the proposed approach dynamically
adjusts power distribution across mission phases to maximize
efficiency and performance over a range of missions. Key findings
indicate that sequence-optimized power management achieves an
approximate 3% reduction in fuel burn and a 2% reduction in
flight energy cost compared to a conventional baseline. The anal-
ysis uses a modeled HEA with conservative battery technology
assumptions of 250 Wh/kg pack-level specific energy and a 150
kW charging power limit to reflect the capabilities of current
technology. The study also finds that optimizing power allocation
across a full day of operations yields greater benefits than
optimizing each flight independently. Minimizing for either fuel
burn or energy cost yields similar power management strategies,
as fuel consumption is the dominant factor in the direct operating
costs for the scenarios studied. These results demonstrate the
feasibility of HEA integration into regional airline markets,
offering improved operational efficiency and cost savings while
maintaining compatibility with existing fleet schedules.

Index Terms—electrified propulsion, optimal power manage-
ment strategies, trajectory-adaptive control, cost-aware optimiza-
tion

I. INTRODUCTION

Hybrid-Electric Aircraft (HEA) present a promising alter-
native to conventional aircraft by offering improved fuel effi-
ciency and reduced operating costs [2], [3]. However, effective
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HEA design must integrate operational constraints during the
early stages of conceptual development to ensure compatibility
with existing airline fleets. A significant challenge arises
from the limitations of current lithium-ion battery technology,
whose specific energy (0.20-0.25 kWh/kg) is nearly 50 times
lower than that of jet fuel (11.9 kWh/kg). Although recent
breakthroughs in research have demonstrated lithium-based
batteries with specific energies exceeding 700 Wh/kg [4],
such technology is neither commercially available nor suf-
ficient to support fully electric aircraft. Electrified regional,
narrow-body, and wide-body aircraft would require battery
specific energies of approximately 600, 820, and 1,280 Wh/kg,
respectively [5]. These limitations necessitate optimization-
focused approaches that identify the most effective use cases
and operational strategies for near-term HEA adoption.

The regional jet market is particularly promising for HEA
integration due to its shorter-range missions, which better
align with moderate battery utilization [6]-[8]. Nonetheless,
replacing conventional aircraft with HEA on regional routes
may increase airline operating costs unless substantial fuel
savings can be achieved [9], [10]. In 2019, fuel accounted for
nearly 24% of global airline operating costs [11], underscoring
the importance of pursuing any strategies that can reduce fuel
consumption and thus improve economic viability.

In parallel-hybrid architectures, strategies that reduce gas
turbine takeoff power by incorporating short boosts of electric
motor support have been shown to decrease fuel consump-
tion [12]. Yet, without adaptive power management, extending
hybridization beyond the takeoff phase often increases en-
ergy requirements and necessitates heavier batteries [2]. This
additional battery mass increases gross takeoff weight and,
in turn, the overall mission energy demand. Moreover, gate
charging durations—constrained by conventional turnaround
times—can further limit the realized benefits of hybridiza-
tion [13]. An adaptive strategy that maximizes available bat-
tery energy is therefore essential to balance efficiency, cost,
and feasibility.

Prior research on HEA power management has primarily fo-
cused on propulsion architecture types and high-level charge-
depleting/sustaining strategies [14]-[16]. While optimization
of power-split strategies has been explored [17], most studies
hold the flight path and mission profile fixed to those of a con-
ventional aircraft. When optimization is applied, the mission
is typically discretized into only a few broad segments (e.g.,
climb, cruise, descent), limiting the granularity of possible
power management strategies [18]-[20]. By contrast, this work



discretizes each mission into 146 control points, enabling
much higher-fidelity variation in power management across the
entire flight envelope. This approach allows the mission profile
itself—not only the power split—to adapt in pursuit of optimal
energy usage. Furthermore, unlike many prior studies, the
optimization framework developed here explicitly considers
both fuel consumption and flight energy costs, capturing the
influence of electricity pricing in addition to traditional fuel
metrics.

Sequential power management and charging strategies have
been studied in the context of UAVs [21]-[23], but the oper-
ational characteristics of regional HEA—including larger bat-
teries, higher payloads, longer ranges, and stricter turnaround
requirements—preclude direct transfer of UAV-based methods.
A dedicated, high-fidelity study for regional aircraft is there-
fore required in the context of aircraft performance, propulsion
system efficiency, and airline operations.

Previous work by the authors developed conventional
and parallel-hybrid electric aircraft models based on the
ERJ175LR regional jet using the Future Aircraft Sizing Tool
(FAST) [13]. Analysis of regional airline route data from the
Bureau of Transportation Statistics over a sequence of flights
for a single tail number highlighted the impact of limited gate
time on charging feasibility. Additionally, the findings revealed
that hybridizing takeoff phase alone achieved approximately
2-3% fuel savings over conventional counterparts, while in-
cluding climb hybridization imposed excessive battery weight,
thereby resulting in higher fuel consumption than conventional
aircraft. These outcomes were largely attributed to the use of
a lower-fidelity engine model in the previous study. In this
work, the engine model fidelity has been improved using the
ICAO engine database method as detailed in [24].

The objective of this work is to develop an adaptive power
management strategy for regional HEA that optimizes in-
flight power distribution and ground charging across sequential
daily missions. By dynamically allocating power between the
electric motor and gas turbine engine over a finely discretized
mission profile, while considering fuel burn and energy cost,
the proposed strategy addresses real-world operational con-
straints while enhancing overall efficiency. This study fills a
critical gap in current HEA literature by offering a scalable
framework for trajectory-adaptive, cost-aware power manage-
ment optimization, demonstrating its benefits for regional
operations by reducing fuel consumption, while ensuring fleet
compatibility.

II. TECHNICAL APPROACH

This section describes the technical methods used to develop
the aircraft models, implement adaptive power management
and dynamic battery charging strategies, and formulate both
single-mission and sequence-based optimization problems.

A. Model Development and Design Mission Profile

Both conventional ERJ175LR and the HEA models were
developed and analyzed using FAST!, which is an open-
source, MATLAB-based aircraft sizing tool for designing and

Uhttps://github.com/ideas-um/FAST

analyzing conventional and electrified aircraft concepts across
any propulsion architecture [24]. These models were sized on
the design mission based on a notional ERJ175LR mission,
as illustrated in Fig. 1. Each flight segment is defined by
specified airspeeds and altitudes consistent with the ERJ175
mission profile (Table I). The mission profile includes a reserve
mission to determine the required fuel capacity in compliance
with FAA safety regulations [25]. For further details on the
ERJ175LR model development, see [13].

Main Mission

Cruise

Reserve

Climb,

Takeoff,

F————————— Design Range —._100 nmi

+45 min

Fig. 1. Schematic of full mission profile in FAST.

TABLE I
MISSION PROFILE ASSUMPTIONS.
Segment Value Main Mission Reserve
Takeoff TAS (m/s) 69.5 -
Climb EAS (m/s) 102.9 102.9
Cruise TAS (m/s) 231.3 128.6
Cruise Altitude (m) 10668 3048
Descent EAS (m/s) 108.0 102.9
Landing TAS (m/s) - 83.3

The HEA model integrates a parallel-hybrid propulsion
architecture, illustrated in Fig. 2, into a twin-fan aircraft, with
one battery back powering both electric motors. Hybridization
is applied exclusively during takeoff and climb. The power
outputs of the gas turbine engine (GT) and electric motor (EM)
during climb are controlled via a throttle setting, or power
code (PC), defined in (1). In off-design operations—where
the aircraft design remains the same, but payload, range, and
altitude targets differ from the design mission—the PC is used
as an optimization variable to set the climb power output,
allowing FAST to iteratively evaluate climb performance based
on this control strategy. Takeoff always employs full throttle,
ensuring maximum PC from all engines. Off-design missions
follow the previously defined mission profile but adjust the
design range and altitude to match the desired route, and all
include the same reserve mission as shown in Fig. 1 and
Table I.

Pout:PCXPav' (1)

The following sections describe two optimization problems:
one for single-mission power management and another for
sequential-flight optimization that considers the effects of
charging in between each flight. In both cases, FAST is treated
as a black-box model, and finite difference methods are used
for differentiation.
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Fig. 2. Parallel-hybrid propulsion architecture.

B. Single Mission Optimization Problem

The single-mission optimizer minimizes the block fuel burn
(Wy) by adjusting the power codes for the gas turbine engine
PCg¢r,; and the electric motor PCgas ;, where ¢ denotes the
i-th point in the discretized mission profile. During takeoff,
both power sources operate at full throttle, while during climb
the power codes vary continuously between 0% and 100%.
Critical constraints include (i) maintaining the State of Charge
(SOC) between 20% and 100% to ensure battery safety,
(ii) limiting Rate of Climb (RC') to a prescribed maximum
(RCinqy) to maintain passenger comfort, (iii) ensuring that
the required power to fly the given trajectory (Pr.q) does
not exceed available power (F,,) from the propulsors, and
(iv) keeping the takeoff gross weight (TTOGW) within the
maximum takeoff weight (M T OW) of the aircraft. The opti-
mization problem statement is outlined below.

minimize ~ Wpy
by varying PCgwm,i, PCar,,
subject to 0% < PCgrum,: <100%, 0% < PCqr,; < 100%,

20% < SOC < 100%, TOGW < MTOW,
Preg,i < Pavyi, RC; < RCrax.
@)
The optimization problem employs FAST with Matlab’s
Jfmincon function, utilizing nonlinear inequality constraints to
solve for minimum fuel burn [26]. Interior-point method was
chosen as the optimization algorithm due to its effectiveness
in managing a large number of design variables, implementing
non-linear constraints, converging even from an infeasible
starting point, and locating the global minimum [27].

C. Sequence Optimization Problem

The sequence optimizer extends the single-mission approach
to a full day of operations by optimizing the climb power codes
for every mission in a flight sequence. An example sequence
is illustrated in Fig. 3, which shows the design variable
placements (PCs) across the discretized mission profiles and
the time spent at the gate, partitioned into a fixed refueling
period (first five minutes) and a subsequent charging period.
The refueling time is estimated using a typical refueling truck
fuel flow rate of 1000 kg/min for Jet A fuel [28].

The sequence-based optimization problem is summarized
below. Its objective is to minimize the total daily fuel burn by
accounting for energy usage in each flight and adjusting the
SOC for subsequent missions through the charging phase. This
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Fig. 3. Example sequence mission profile with discretized climb segment.

formulation allows the optimizer to balance energy depletion
with battery state without imposing a fixed SOC threshold at
the end of each mission. In this notation, k£ represents the
mission number, ranging from 1 to n, where n is the total
number of flights in the sequence.

Both optimization problems are set up to minimize fuel burn
for the aircraft because it is hypothesized that fuel is the main
contribution for operating cost. However, the value minimized
can be changed to any aircraft model mission energy output
like fuel energy, energy cost, or battery energy. The value
minimized changes how the optimizer designates power code.

n
minimize E Wik
k=1

by varying PCewm,k,i, PCar,k,i,

subject to 0% < PCemk,i < 100%, 0% < PCar,k,: < 100%,

20% < SOCy, < 100%, TOGW), < MTOW,
Prcq,k,i < Pav,k:,ia Rck,z S Rcmax-
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D. Updates to FAST’s Battery Model

This section summarizes the modifications implemented in
FAST’s battery model, which now incorporates maximum
discharge rate checks during battery sizing and features a more
realistic charging model. The specifications for the chosen
Lithium-ion battery is given in Table II.

TABLE 11
RECHARGEABLE LI-ION BATTERY PARAMETERS.

Parameter Value Unit
Cell Nominal Voltage (Vihom) 3.6 \'%
Cell Maximum Capacity (Qmax) 3 Ah
Battery Specific Energy (epatt) 250 Wh/kg
System Voltage (Vsystem) 2232 \'%
Maximum Allowable C-rate (Crmaz) 5 C
Minimum SOC threshold 20 %
Cell Internal Resistance 0.0199 Q
Cell Maximum Extracted Voltage 4.0880 v
Number of Cells in Series (Nger) 62 cells
Number of Cells in Parallel (Npar) 372 cells




1) Battery Sizing Methodology: Battery sizing critically
affects the aircraft gross weight, feasibility of the hybridization
strategy, and the operational flexibility. In this study, the
battery pack is sized iteratively within the aircraft sizing loop
based on both the energy and power requirements of the design
mission. First, the desired system voltage (Vsystem) and the
nominal cell voltage (Vyom), determine the number of cells
in series (Ngep):

Vsystem

Nier Vaors “4)

During aircraft sizing, the total required battery energy

(Ereq) and the maximum required battery power (F,q,) are

computed from mission analysis. For the power-based sizing,

the maximum allowable discharge current (1,44 ce1r) 1S given
by

Ima:n,cell = Cmax . Qmama (5

which in turn is used to determine the number of parallel cells
needed for power (Npar power):

Pmaz
ano’m . Nser . Imaz,cell

(6)

Npar,power =

Similarly, the number of cells in parallel based on the energy
requirement, Npqr energy» 15
ET&q
: Nser . Qmaw ’

The final battery pack design uses the most restrictive (largest)
value, ensuring both energy and power criteria are met:

)

N ar.ener -
par,energy ‘f
nom

Npar = max (Npanpowem Npar,energy) . (8)

An empirical equivalent circuit model captures the battery
discharging dynamics by incorporating the open-circuit volt-
age (OCV) as a function of SOC, internal resistance, dis-
charging current, polarization effects, and exponential voltage
decay [13], [29]. The battery cell voltage during discharge is
given by 9:

K-
Viise = Vo = (Q> (Quet +I*) — R- T + Ae~BQuact,

Q - Qact
)

where Vs is the battery voltage, Vj is the battery constant
voltage, () is the battery capacity, Q.. is the battery actual
capacity, R is the internal resistance, I is the battery current,
I* is the filtered current, A is the exponential zone amplitude,
B is the exponential zone time constant inverse, and K is the
polarization constant.

2) Charging Strategy: A dynamic battery charging model
was developed based on a constant current/constant voltage
(CC-CV) strategy to capture the charging process with more
fidelity given the time constraints. This enhancement replaces
the simplified charging assumptions with industry standard
protocols to improve the overall accuracy of energy manage-
ment simulations and cost analysis. The battery is charged
at the maximum allowable power, W, ., from the initial
threshold until 80% SOC. Once the threshold is reached,
it enters the CC phase at a constant current of 1C. Then,
when the cutoff (maximum allowable) voltage is achieved, it

switches to CV mode, where the voltage remains constant and
the current gradually decreases until 0.02C [30], [31].

Winaz, 20% < SOC < 80%,
Wch = Iconstvpack(SOC)7 80% < SOC < SOCCVv
Idec(t>vvconsta SOCC’V < SOoC < 100%7

(10)

Vpack 18 the actual loaded pack voltage at the corresponding

SOC during CC phase, and .. is the tapering current during
CV phase. Fig. 4 illustrates the charging profile.
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Fig. 4. Sample charging profile demonstrating constant power below 80%
SOC, followed by the CC-CV strategy.

E. Flight Energy Cost

The optimization problems were expanded to consider flight
energy cost as the objective function. The average cost of Jet
A fuel and electricity for each state was collected from the
US Energy Information Administration [32] [33]. The pricing
data integrated into the sequence analysis to determine the cost
of the flight based on refueling and recharging at the origin
airport locations. An example of the pricing information by
airport is provided in Table X.

TABLE III
EXAMPLE OF AIRPORT ENERGY PRICING.
Fuel Price Electricity
Airport  City ($/kWh) Price ($/kWh)
ATL Atlanta, GA 0.0692 0.1109
IAH Houston, TX 0.0713 0.0881
MEM Memphis, TN 0.0708 0.1213
PHL Philadelphia, PA 0.0726 0.1101

Optimizing with respect to cost, rather than fuel burn, can
provide additional insight on how differences between fuel
and electricity pricing influence power management strategies.
By incorporating cost into the optimization, this framework
highlights cases where minimizing fuel burn and minimizing
cost may not lead to identical power management strategies.
Moreover, this cost-based formulation establishes a foundation
for extending the framework to include future scenarios that
capture influence of regional variation of electricity prices,



dynamic electricity prices, renewable energy penetration, or
carbon pricing, providing a more complete perspective on the
economic viability of regional HEA.

III. RESULTS

This section summarizes the sizing outcomes of the aircraft
models, verifies the convergence of the optimization frame-
work, and applies the method to airline sequence case studies
using 2019 Mesa Airlines operational data. Hybrid-electric air-
craft performance is compared against a conventional ERJ175
baseline, focusing on fuel burn reduction and operating cost
analysis to assess potential efficiency gains and economic
impacts.

A. Model Design

Two aircraft models were developed based on the
ERJ175LR top-level and mission performance requirements,
as shown in Table IV. The HEA battery is modeled using
current battery technology with a specific energy of 250
Wh/kg [34].

A prior study performed a sensitivity design analysis of the
HEA to investigate different design power split strategies [35].
The study highlighted the trade-off between assigning a larger
sea-level static (SLS) design power split to the electric motor
and the resulting battery weight penalty. A higher electric
share reduces the required gas turbine (GT) size, but as motor
usage increases, the battery mass required offsets any fuel-burn
benefits due to the added system weight.

For this work, the HEA configuration with the lowest overall
fuel burn was selected. The propulsion system of the model
is sized based on sea-level static (SLS) takeoff conditions,
where 10% of the required power is provided by the electric
motor, with the gas turbine supplying the remaining 90%, with
both operating at maximum power code. During climb, the
gas turbine continues at its maximum continuous power while
the EM’s power code is reduced to 30%. Sensitivity studies
indicated that assigning a higher design SLS split at takeoff
would result in an undersized GT for cruise performance, ren-
dering it unable to complete the missing. A climb power code
exceeding 30% necessitates an impractically heavy battery to
support the entire climb segment leading to increased fuel
burn. The resulting battery pack design, assuming a system
voltage of 223V, is given in Table II.

B. Optimizer Verification

To verify the single-mission optimizer, a 1000 nmi off-
design mission was used to assess whether fuel burn could be
further reduced with adaptive power management while main-
taining flight feasibility. A sensitivity study of varying input
design variables confirmed that, within feasible bounds, the
optimizer converged to the same optimal power management
strategy (Table V). Compared to an HEA using the original
design power codes, the optimized HEA reduced fuel burn by
1.7%.

Fig. 5 illustrates the climb power codes from the sized
HEA model, which served as the initial design variables

TABLE IV
CONVENTIONAL (CONV.) AND HEA TLARS AND SPECIFICATIONS.
Group Specification Conv. HEA
Design Range (nmi) 2150 2150
ERJ175LR Max Passengers 78 78
TLARs Thrust-to-Weight Ratio 0.339  0.339
and Cruise Mach 0.78 0.78
Specifications  Wing Loading (kg/m?) 5334 5334
Cruise L/D 15.2 15.2
Max RC (m/s) 1143 1143
MTOW (kg) 38,037 41,147
Empty Weight (kg) 21,545 23,093
Block Fuel (kg) 9,397 9,364
Sized Battery Weight (kg) - 99.4
Aircraft Total SLS Thrust (kN) 1234 131.5
Parameters SLS Engine Thrust (kN) 61.7 59.2
Wing Area (m?) 724 712
Avg Takeoff Engine TSFC [kg/(kN-h)]  39.12  31.92
Avg Cruise Engine TSFC [kg/(kN-h)] 70.62  65.08
EM Power (kW) - 9130
Battery Energy (kWh) - 249.1

parameterized by climb altitude. The optimizer adjusted the
gas turbine (GT) and electric motor (EM) power codes while
ensuring the GT supports the mission climb and the EM
operates between full throttle and off.

As shown in Fig. 6, the optimal solution follows an
on—off—on EM strategy: the motor provides full support during
takeoff, is deactivated at the start of climb, and is re-engaged at
higher altitudes to expedite climb and transition to cruise. Dur-
ing the initial climb segment, the GT operates near maximum
throttle, its most efficient condition, resulting in higher early
fuel burn that reduces aircraft weight and conserves battery
energy. At higher altitudes, GT thrust capability diminishes
as the engine lapses; however, the conserved battery reserves
allow the EM to deliver a full-power boost, maintaining climb
rate and reaching cruise more efficiently.

HEA Design Mission PC

—GT PC
———EM PC
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Fig. 5. Climb power codes from HEA model sized on design mission.

TABLE V
INITIAL DESIGN VARIABLE CONVERGENCE SENSITIVITY STUDY.

Initial Design Variables (%) Min Fuel Battery Energy
EM PC GT PC Burn (kg) Used (kWh)
Design PC Design PC 3,800.96 195
100 100 3,800.96 195

50 100 3,800.96 195

0 100 3,800.96 195



Optimized HEA PC for 1000 nmi
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Fig. 6. Optimized climb power codes for a 1000 nmi mission.

C. Fuel Burn Comparison

The sequence in Table VI was selected from Mesa Airlines
January 2019 flight data to capture diverse mission lengths and
limited turnaround times [13]. Specifically, the first two flights
are both long, testing whether the battery can be recharged
sufficiently between them given minimal ground time. The
schedule then includes two shorter flights followed by another
long flight, further highlighting how varying mission lengths
and charging intervals affect overall performance. The first
flight begins at 100% SOC to represent overnight charging,
and each airport is assumed to have a 150 kW charger,
a realistic assumption considering current DC fast-charging
technology [36].

TABLE VI
SELECTED REGIONAL AIRLINE SEQUENCE TO TEST AIRCRAFT
OPERATIONAL PERFORMANCE.

Flight 1 2 3 | 4 5
Origin IAH PHL IAH MEM IAH
Destination PHL IAH MEM IAH TUS
Distance (nmi) 1,151 1,151 406.7 | 406.7 | 813.4
Cruise Altitude (m) | 10365 | 10365 | 9,144 | 9,144 | 10365
Time at Gate (min) 0 37 65 53 50

Four test cases were examined to evaluate power manage-
ment strategies, optimizer performance, and HEA benefits over
its conventional counterpart:

e Case 1. HEA with power codes optimized across the entire
sequence using Eqn 3.

HEA with power codes optimized for each individ-
ual missions and inter-flight charging using Eqn 2.
HEA using the original design power codes kept

constant for all missions.

e Case 2.

e Case 3.

e Case 4.

Conventional baseline model.

TABLE VII
FUEL AND BATTERY ENERGY CONSUMPTION OF CASES ON TEST
SEQUENCE.
Total Fuel Fuel Burn Diff  Total Battery Total Energy
Case  Burn (kg) wrt Case 4 Energy (kWh) Cost ($)
1 14,674 -3.02% 635.5 12,677
2 14,697 -2.8% 635.3 12,697
3 14,974 -1.04% 556.6 12,798
4 15,131 - - 12,906

constant 30% EM power, lacks sufficient top of climb boost,
leading to a shallower, longer climb and higher total fuel burn.
All HEA cases maintain a higher GT power code than the
conventional baseline (Case 4), as the HEA’s downsized gas
turbine must operate at a higher throttle setting to provide the
necessary thrust. Although the HEA carries additional battery
weight, the enhanced cruise efficiency of the smaller engine
more than compensates for this penalty, resulting in lower
overall fuel consumption.
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Fig. 7. Power codes and SOC for each case on the sequence.

TABLE VIII
TIME TO CLIMB AND FLY THE MISSION FOR EACH FLIGHT IN EACH CASE,
PRESENTED IN MINUTES AS: CLIMB TIME; FLIGHT TIME.

The total fuel burn and battery energy used for each case
are reported in Table VII. Case 1 yields the lowest fuel burn
and highest battery usage, while Case 3 saves only 1% fuel
over the conventional baseline, highlighting the importance of
employing optimized power management strategies.

Fig. 7 compares the design variables and SOC profiles
across the sequence. In Cases 1 and 2, the EM operates at
full throttle early in the climb and again near the top of climb
to support the GT, which experienced reduced power available
at higher altitudes. Table VIII summarizes the corresponding
climb and flight times. In contrast, Case 3, which uses a

Case 1 Case 2 Case 3 Case 4
Flight 1 20.9; 171 204; 171 23.0; 172 20.3; 171
Flight 2 21.1; 171 22.5; 171 23.0; 172 20.3; 171
Flight 3 16.3; 68.3 16.2; 68.3 16.9; 68.5 16.1; 68.1
Flight 4 16.3; 68.3 16.2; 68.3 20.6; 69.8 16.1; 69.0
Flight 5 19.7; 125 20.3; 125 21.8; 125 19.6; 124

Between the two optimized approaches, Case 1 achieves
greater fuel savings by prioritizing an 80% SOC before each
flight. In contrast, Case 2 fully depletes the battery (to 20%
SOC) on the first flight, leaving insufficient ground time to
recharge beyond 55% SOC for the second flight. Consequently,



the EM cannot provide as much support during subsequent
climbs, leading to a higher overall fuel burn than Case 1.

D. Future Technology Comparison

Under current battery technology, the HEA incurs a sig-
nificant weight penalty, limiting its fuel-burn advantage. To
explore the impact of improved batteries, a new HEA model
was sized for the same TLARs and design mission, with a
500 Wh/kg battery. The resulting advanced HEA is summa-
rized in Table IX.

TABLE IX
ADVANCED HEA S1ZED WITH 500 WH/KG BATTERY ASSUMPTION.

% Change Over

Specifications Value Conventional Current HEA
MTOW (kg) 38,244 -1.02 -7.06
Empty Weight (kg) 21,065 -2.23 -8.78
Block Fuel(kg) 9,027 -3.94 -3.60
Battery Weight (kg) 458.0 - -54.03
Total SLS Thrust (kN) 122.2 -0.97 -7.09
SLS Engine Thrust (kN) 55.0 -10.86 -7.09
Wing Area (m?) 71.7 -0.97 -7.12
EM Power (kW) 848.5 - -7.06
Battery Energy (kWh) 229.0 - -8.03

The resulting advanced HEA model was optimized over
the same sequence (Case 5) with a high battery charging
rate assumption of 500 kW. Case 5 reduced total fuel burn
to 13,992 kg, which is -7.53% over Case 4 and -4.67%
over Case 1, while using 892 kWh of battery energy. The
power management of the optimized advanced and current
technology HEA (Case 1) is compared in Fig. 8. Case 5 has
an almost fully charged battery after every mission and uses
higher electric motor power for longer during climb. This study
shows that future technology levels will yield larger fuel burn
reductions, and that power management optimization remains
crucial to maximize the benefits because the mission profiles
can vary widely. [37]

E. Energy Cost Comparison

The final optimization experiment performed is to minimize
flight energy cost over the selected sequence. The energy costs
for each sequence include the cost to refuel and recharge at
the origin airport for each flight. This study provides insight
on how electricity costs may impact optimal energy use. The
current and advanced technology HEA power management
strategy is again optimized on the sequence, Tab VI, to
minimize total energy cost, Case 6 and 7 respectively. Their
cost and energy use results are presented in Tab X and their
power management strategies are compared to Case 1 and 5
in Fig 9.

TABLE X
OPTIMIZING POWER MANAGEMENT FOR LOWEST ENERGY COST
SEQUENCE RESULTS.

Specifications Case 6 Case 7
Total Fuel Burn (kg) 14,674 13,994
Total Energy Cost ($) 12,677 12,119
Total Battery Energy (kWh) 635.5 891.8
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Fig. 8. HEA models with current and advanced technology optimized power
management over sequence.

A deeper analysis of these results, particularly the nearly
identical power management profiles in Figures 9 and 10,
reveals a critical insight into the operational economics of
current-generation HEA. Although electricity is often more
expensive per kilowatt-hour than jet fuel at the airports studied,
the optimizer still favors significant battery use during climb.
This counterintuitive outcome arises because the primary
driver of cost savings is not the marginal price of energy during
climb, but the substantial fuel reduction achieved during the
much longer cruise segment. By using electric assist during
takeoff and climb, the HEA can be designed with a smaller
gas turbine that operates closer to its peak efficiency point
during cruise. The resulting fuel savings are so significant
that they outweigh the higher cost of electricity, making the
strategies for minimum fuel burn and minimum energy cost
fundamentally the same under current U.S. market conditions.

IV. CONCLUSIONS

This study demonstrates that an adaptive power manage-
ment strategy—one that dynamically allocates electric and gas
turbine engine power across sequential flights—can achieve a
3% reduction in fuel burn and 2% in energy cost compared
to conventional configurations. By integrating aircraft sizing
with realistic operational constraints, including limited gate
charging durations and variable mission profiles, the proposed
approach enhances overall propulsive efficiency despite the
additional battery weight imposed by current technology.
Improved engine modeling using the ICAO engine database
further strengthens these findings by enabling more accurate
predictions of climb and cruise performance.

The results indicate that HEA can be feasibly integrated into
regional airline fleets without disrupting existing operations,
provided that power management is optimized to balance
energy depletion and battery state effectively. Moreover, al-
though the cruise phase does not operate in hybrid mode,
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Fig. 9. HEA models optimized power management to minimize total energy
cost compared to fuel burn.
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Fig. 10. Zoomed in power management strategy for last 2 missions.

the efficieny gains from operating a downsized gas turbine
engine at a higher throttle setting compensate for the battery
weight penalty. This leads to significant fuel savings during
the dominant cruise segment.

Future work will expand battery model functions to include
state of health monitoring and replacement costs estimations.
The optimization problem can be expanded from flight energy
cost to full life cycle cost of the aircraft in order to understand
how power management effects the cost of the aircraft over
its life.
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