AIAA SciTech Forum

Mokotoff, P. R., Shi, M., Carrere, A. L., and Cinar, G. (2026). Weakly Coupling MBSE and

12-16 January 2026, Orlando, FL MDAO via a Tool-Neutral Authoritative Source of Truth. AIAA SciTech 2026 Forum.
AIAA SCITECH 2026 Forum

Downloaded by University of Michigan on January 8, 2026 | http://arc.aiaa.org | DOI: 10.2514/6.2026-1607

American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2026-1607

Weakly Coupling MBSE and MDAO via a Tool-Neutral
Authoritative Source of Truth

Paul R. Mokotoff*
Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109

Mingxuan Shi,
The Boeing Company, Everett, Washington 98275

Alexander L. Carrere?
The Boeing Company, Huntsville, Alabama 35801

Gokcin Cinar®
Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109

Digital engineering at-scale requires model-based systems engineering (MBSE) to remain
traceable while multidisciplinary analysis and optimization (MDAOQO) evolves rapidly across
distributed teams and tools. Direct tool-to—tool links create conflicting “sources of truth”
because MBSE typically holds system-level requirements while MDAO environments hold
subsystem- and component-level data. This paper introduces a tool-agnostic framework that
resolves this conflict by establishing an authoritative source of truth (ASOT) outside the MBSE
and MDAO environments. The ASOT is a version-controlled, unit- and type-aware data schema
with stable identifiers. MBSE and MDAOQ artifacts are synchronized with idempotent read/write
APIs, enabling seamless data transfer. A demonstration developed under NASA’s Sustainable
Flight National Partnership automatically instantiates and updates a system model from the
ASOT, preserving structure, identifiers, and units. A concrete mapping between The Boeing
Company’s Aircraft Data Hierarchy and the SysML modeling language is enabled by open-
source adapters (Jython for Magic System of Systems Architect, Python for OpenMDAOQO), which
implement the synchronization and produce auditable change logs. The resulting weak coupling
reduces training/licensing burden and supports distributed collaboration while maintaining
traceability required by emerging digital engineering guidance. The framework, API code, and
workflow patterns are reusable for coupling other MBSE and MDAO environments.

L. Introduction

Model-Based Systems Engineering (MBSE) has emerged as a digital means to track complex system design
activities, maintain traceability between design decisions, and support requirement verification [[1]. A centralized system
model acts as a global repository, storing all information about the system architecture, its design requirements, and
analyses performed [2], thus supporting systems design practices. A major advantage of MBSE is that a consistent
set of parameters defines the system architecture — if a parameter or component is changed in one part of the model,
it is modified across the entire system model. This ensures that all systems engineers use the same parameters, thus
eliminating the need to manually update all design documents. However, MBSE currently lacks the capability to provide
analytical and numerical methods [3]], requiring connections to external analysis tools.

In contrast, Multidisciplinary Analysis and Optimization (MDAO) has been a longstanding facet of engineering
design, employing computational models to simulate or optimize a system’s behavior and performance. Such models
are used by disciplinary engineers to evaluate a component’s performance while interacting with other components in a
subsystem. Furthermore, a component can be optimized for a specific objective and constraints, ensuring sufficient

*Graduate Research Assistant, Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109, AIAA Student
Member.

TPropulsion Engineer, The Boeing Company, Everett, Washington 98275, ATAA Member.
Associate Technical Fellow, The Boeing Company, Huntsville, Alabama 35801, AIAA Member.
§ Assistant Professor, Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109, AIAA Senior Member.

Copyright © 2026 by Paul R.
Mokotoff, Mingxuan Shi, Alexander L. Carrere, and Gokcin Cinar. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

10.2514/6.2026-1607

Check for
updates

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2026-1607&domain=pdf&date_stamp=2026-01-08

Downloaded by University of Michigan on January 8, 2026 | http://arc.aiaa.org | DOI: 10.2514/6.2026-1607

compatibility and performance once integrated into the overall system architecture. However, MDAO tools only perform
the analyses and are not intended for rapid reconfiguration and integration into different engineering workflows [4].

Though MBSE and MDAO tools may seem disparate, their purposes are complementary. MBSE excels at
representing the system architecture in an understandable manner, capturing design requirements, and easily tracing
design decisions throughout the design cycle. MDAO excels at analyzing specific system architectures and identifying
the optimal component design. Evidently, there is a synergy between these two tools, and combining their capabilities
may help synthesize system architectures that rely on multidisciplinary teams (possibly distributed across multiple
geographic locations) to design different parts of the system architecture. However, this becomes increasingly difficult
as the size of the system architecture grows and more disciplinary engineers become involved [J5].

A. Engineering Computational Tool Couplings in the Literature

Automated couplings between MBSE and MDAO tools have emerged in the literature, particularly as a result of the
AGILE 3.0 and 4.0 projects funded by the European Union [[1} 16, [7]. At first, these projects focused on integrating
computational tools into MDAO frameworks, and have since been broadened to include MBSE and MDAO tool
couplings. The tools are connected via a two-step process: 1) defining a data schema to facilitate information transfer;
and 2) establishing (possibly automated) workflows to run analyses and pass information between the tools.

In the United States, the Air Force Research Laboratory’s (AFRL’s) REACT Project, initiated in 2019, aims
to achieve similar goals with a stronger emphasis on coupling disparate computational tools for MDAO while also
maintaining modularity to integrate MBSE tools into a design workflow [8,9]. The majority of REACT activities
have been conducted internally and disseminated primarily within AFRL and its industrial partners. Boeing and
NASA participated in technical interchange meetings with AFRL regarding REACT starting in 2022, while broader
details of the program became available to the open literature through a 2026 publication [8]. Separately, one paper
previously published by AFRL (not under the REACT project) introduced Philote, a communication standard to facilitate
information transfer between heterogeneous MDAO tools [10].

While existing literature demonstrating automated workflow capabilities predominantly focuses on generating
mechanisms to facilitate data transfer and run computational analyses, there are two other notable works pertaining
to data schema definition. The Common Parametric Aircraft Configuration Schema (CPACS) [[11] was developed to
establish a hierarchical definition of the aircraft and its subsystems. Although this definition is aerospace-specific,
a similar data structure could be developed to represent a more general system architecture, its subsystems, and
components. For MDAO workflows, the Common MDO Workflow Schema (CMDOWS) [[12]] defines the optimization
problem, design variables, constraints, and connections between disciplines.

Prior schema development established a foundation for developing interconnected workflows between MBSE
and MDAO tools. In the literature surveyed, the MBSE tool is commonly treated as a central repository, storing
the data necessary for the workflow [3} [13H16]]. However, other works utilize a central data schema to store the
information [17, 18], with each tool accessing/updating the parameters individually. These two approaches are defined
as “strong” and “weak” couplings, respectively [19], impacting the design and data transfer workflows.

1. Strong Coupling

A strong coupling centralizes the design process around MBSE, requiring both the system architecture and
multidisciplinary workflows to be modeled. For example, a detailed MBSE model of an AGILE MDAO system was
developed by Ciampa et al. [[13]. Another approach involved constructing Requirement-Functional-Logical-Physical
(RFLP) frameworks for the system architecture (a “product RFLP”’) and the workflow (a “process RFLP”) [20].

Other workflow models were developed using MBSE’s parametric or activity diagrams in conjunction with the
system model [3} [15]], permitting some analyses to be executed within the MBSE environment. However, it is also
possible to interface external tools with MBSE, as done by Aiello et al. [14, [16]]. They used Ttool [21] to extract
information from a requirement diagram in MBSE and pass it to an MDAO tool.

Modeling the MBSE-MDAO workflow with a strong coupling has two key advantages. First, all product and design
information resides in one, centralized location, ensuring that all engineers can access the most up-to-date data and
use consistent values in all analyses, thus eliminating the need to transfer information between groups. Second, some
analyses can be executed automatically using MBSE diagrams or by interfacing with external tools, further centralizing
the workflow within MBSE and reducing the time to define and execute the workflow.

However, there are some weaknesses with this approach. First, the MBSE tool retains the “authoritative source of
truth” (ASOT), requiring disciplinary engineers to access the latest design information by interfacing with MBSE. This

Downloaded by University of Michigan on January 8, 2026 | http://arc.aiaa.org | DOI: 10.2514/6.2026-1607

contradicts the typical workflow paradigm in which MDAO stores the subsystem- and component-level requirements
and parameters. Furthermore, additional costs may be incurred for training all engineers in MBSE or purchasing enough
software licenses to support the entire organization. Second, the MBSE models may be product- or workflow-specific,
thus limiting its generality and applicability to other product/workflow designs within an organization. This undercuts
the previous advantage pertaining to the time reduction for defining and executing a workflow. Third, the MBSE model
may become increasingly complex as more design disciplines are integrated into the analysis, limiting its scalability to
more comprehensive design problems.

2. Weak Coupling

A weak coupling unifies the design process around a central data schema and emphasizes integrating all disciplinary
models into a comprehensive analysis framework. Seamless data transfer is enabled by developing mappings between
MBSE/MDAQO tools and a central data schema [17]]. This approach has been exemplified in automated requirement
verification frameworks [18]] and broader system architecture design tools [22].

There are two key strengths to this approach. First, the data schema is accessible to all engineers without requiring
any MBSE software, thus cutting costs to establish more fully integrated workflows within an engineering organization.
Second, multiple data schema instances can be used to represent different system architecture configurations, allowing
an organization to assess multiple designs simultaneously.

Despite the strengths, there are also two weaknesses. First, multiple versions of the data schema may exist and could
lead to conflicting design changes between disciplinary teams within an organization. One potential solution is to store
the data schema in a version-controlled environment, facilitating a pathway to reconcile such conflicts. Second, the data
schema may become prohibitively large, limiting its effectiveness to clearly and quickly communicate data about a
system architecture.

B. Industry Perspectives on Engineering Tool Couplings

Current MBSE and MDAO tool couplings in industry differ from those in academia, especially within the commercial
aerospace industry. Rather than centralizing design workflows around the systems engineering process, industry
practices are more discipline- and tool-centric. These practices are driven by using certified tools to demonstrate product
compliance under federal regulations, a major aspect of commercial airplane development. As a result, engineers use
mature tools and processes to conduct certain analyses and demonstrate that the design meets the necessary regulatory
requirements. Deviating from the certified tools and processes risks non-compliance, preventing airplanes from being
manufactured and delivered to the customers on schedule.

Furthermore, these tools and processes contain embedded data and assumptions that have been accumulated through
decades of airplane design, which prove difficult to be captured by MBSE models and processes, as well as systems
engineers. Therefore, it is difficult to model the systems engineering artifacts with sufficient disciplinary fidelity to be a
single source of truth.

Although this section addresses the reasons why industry currently centralizes their practices around disciplinary
tools rather than systems engineering processes, the authors emphasize that integrating MBSE processes and models with
certified disciplinary tools would benefit the airplane development process. Such integration is particularly important as
compliance to Development Assurance Levels becomes more closely monitored by the regulators.

C. Gaps Between Industry and Academic Practices

Two key gaps were identified from the literature review and industry perspectives. First, despite the progress made
by academic- and research-based entities, collaborative workflows are more difficult to implement in industry, as data is
more tightly embedded within a disciplinary team’s MDAO tools. While establishing fully automated and connected
workflows is a conceivable and compelling problem for academics to solve, industry does not operate in such a unified
manner. Second, multiple academic studies consider the MBSE tool to act as the central data repository, holding the
ASOT. Thus, there is an inherent assumption that all data within an organization is easily accessible by all parties and
that the design process is centralized around MBSE.

However, this approach cannot be feasibly applied in industry — the MDAO tools hold the subsystem- and component-
level parameters, leading to conflicting ASOTs. Requiring organizations to centralize the design process around MBSE
could pose an insurmountable challenge; the cost of restructuring internal workflows, purchasing MBSE tool licenses
for each engineer, and training disciplinary engineers in MBSE may be prohibitively expensive. Furthermore, policies

Downloaded by University of Michigan on January 8, 2026 | http://arc.aiaa.org | DOI: 10.2514/6.2026-1607

in defense and aerospace now explicitly call for ASOT models and data, but stop short of prescribing a single tool to fill
that role, emphasizing visibility, traceability, and configuration control across the digital thread [23]].

I1. Objective: A Bridge to Couple MBSE and MDAO Tools

This research defines a framework for bridging MBSE and MDAO in a repeatable, tool-agnostic manner. The
proposed approach adopts a centralized, version-controlled data schema as the ASOT, and utilizes read/write application
programming interfaces (APIs) to map between the ASOT and each tool’s native modeling language. This enables
disciplinary engineers to own their MDAO artifacts while guaranteeing system-level traceability in MBSE.

The framework is intentionally weakly coupled; data is shared via the ASOT rather than direct tool-to-tool links.
This reduces training and licensing costs, supports distributed teams, and generalizes the workflow across any analysis
toolchain. A design workflow is demonstrated using The Boeing Company’s Aircraft Data Hierarchy (ADH) as
the ASOT, Magic Systems of Systems Architect (MSOSA) for MBSE, and OpenMDAO [24] for MDAO, with an
open-source API[f|to automate the exchanges.

This paper reports on the design and implementation of:

1) A tool-neutral coupling, externalized by the ASOT into a version-controlled schema and accessed via idempotent

read/write APIs;

2) A concrete, reusable mapping from the ADH to the SysML modeling language with unit/type preservation;

3) An open-source API implementation for MSOSA and OpenMDAO that creates models from the ASOT, updates

models from modified ASOT instances, and emits auditable change logs; and

4) Operational “best practices” for distributed teams, involving stable identifiers, aliasing, and conflict resolution

via version control, with minimal assumptions about tool co-location.
Together, these components provide a repeatable, weakly-coupled approach that lowers adoption cost while maintaining
traceability and design governance.

The remaining sections in this paper are as follows. Section [lII|describes the overall framework to support NASA’s
Sustainable Flight National Partnership (SFNP, 2021-2025). Section[[V]demonstrates parts of the workflow, with a fully
comprehensive demonstration available onlin Lastly, Sectionconcludes the paper, summarizing key outcomes and
highlighting areas of future work.

III. MBSE-MDAO Coupling Framework
This section describes the framework for coupling MBSE and MDAO tools with a centralized data schema as the
ASQOT. First, the interactions between MBSE/MDAO tools are described, with the ASOT acting as an intermediary
between them. Second, the ASOT’s structure is described, along with the aerospace-specific structure used to support
NASA’s SFNP. Lastly, the API routines and their interaction with the ASOT are described. Despite the specific
application demonstrated, the MBSE-MDAO interactions are tool-agnostic, and can be generalized to represent
communication between any two computational tools with disparate modeling languages.

A. MBSE-MDAO Interactions

The coupled MBSE and MDAO tool interactions are illustrated in Fig.[I] The three entities involved are the: 1)
ASOT; 2) MBSE tool and its API; and 3) MDAO tool and its API. The framework assumes that the MBSE and MDAO
tools exist in different computational environments, further generalizing the framework to span multiple organizations
in (possibly) different geographic locations.

*https://github.com/ideas-um/MBSAE-API
*https ://github.com/ideas-um/MBSAE-API/blob/main/Demo/Demo .md

https://github.com/ideas-um/MBSAE-API
https://github.com/ideas-um/MBSAE-API/blob/main/Demo/Demo.md

Downloaded by University of Michigan on January 8, 2026 | http://arc.aiaa.org | DOI: 10.2514/6.2026-1607

MBSE API: MDAO API:

Read Read
MBSE ASOT MDAO
u —
[ﬁ a — N
o —
1 o—

MBSE API: MDAO API:

Fig.1 MBSE-MDAO coupling framework. Boxes represent entities and arrows represent API routines.

This framework is rooted in multiple assumptions and “best practices” for design workflows:

1) Version controlled — resolves design conflicts: the ASOT is stored in a version-controlled repository with
change history and conflict resolution capabilities, ensuring that all involved organizations use a consistent set of
design parameters, requirements, and analysis results.

2) Stable identifiers — consistent naming conventions: every element has a stable identifier and optional aliases
(for abbreviated naming conventions in computational environments).

3) Data units/types — prevents silent data corruption: each parameter is encoded with its own units and types.

4) Idempotency — safe re-sync: the API’s read/write routines are idempotent, facilitating repeated synchronization.

5) Documented design changes — ensures traceability: changes made to the ASOT are recorded for auditing,
aligning with emerging digital engineering guidance [23].

6) Declarative mapping — consistent data transfer: mapping rules are explicit and versioned with the ASOT.

The ASOT acts as an intermediary between the MBSE/MDAO tools and holds the data that each engineer may
access. This permits systems and disciplinary engineers to each utilize their own MBSE/MDAO tools while performing
their individual design tasks. All engineers may access the ASOT at any time to either: 1) receive data to update their
computational models; or 2) update the ASOT with data pertaining to a design decision or analysis performed.

To perform these actions, the engineer must call an appropriate API routine, described in Section[[I.C] An API must
be constructed for each tool, containing at least one “read” and one “write” routine (represented by the text associated
with each arrow in Fig.[T). Examples of such routines are provided in Section [[Il.D] In some cases, it is useful to have
multiple read/write routines within one API. For example, in an MBSE API, a user may want one API function to create
a new system model from the ASOT, while another one only updates the system model’s contents.

In this work performed for NASA’s SFNP, the MBSE and MDAO tools selected were MSOSA and OpenMDAO [24]].
MSOSA was selected because the systems engineers at NASA and The Boeing Company had prior experience using
the tool in their work and each organization held licenses to use the tool. OpenMDAO was selected because it is an
open-source optimization framework co-developed by NASA.

B. ASOT Structure

The ASOT is a structured, text-based file, that acts as an intermediary between the MBSE and MDAO tools. It
stores all information related to a product’s design, requirements, analyses, and testing methods, and is accessed by
both systems and disciplinary engineers. Each level of the ASOT contains a (sub)system or (sub)component that is
nested within a higher level system or component, ensuring that parent-child relationships can be established in the
MBSE/MDAO tools. Prior to synchronization with MBSE/MDAO tools, the ASOT is validated to ensure that the
appropriate identifiers and data types are instantiated.

Although the ASOT is product-agnostic, an aerospace-specific implementation was used in this work — The
Boeing Company’s ADH [235]], based on the United States Department of Defense’s “Work Breakdown Structure for
Defense Materiel Items” (MIL-STD-881, Revision F) [26]. The Work Breakdown Structure (WBS) meticulously and
conveniently decomposes an aircraft into multiple subsystems and its parts, along with other information necessary for
aircraft design development, such as system testing and evaluation.

Downloaded by University of Michigan on January 8, 2026 | http://arc.aiaa.org | DOI: 10.2514/6.2026-1607

Although the WBS provides a foundation for structuring data, additional detail is needed to categorize the information
stored in each level of the structure. Data in each WBS level was further classified into four categories:

1) Architecture: describes the physical components utilized in the design of a subsystem.

2) Requirements: identifies (non-)functional design requirements.

3) Performance: the aircraft’s performance during testing and evaluation with respect to its requirements.

4) Behavior: describes how the aircraft is expected to behave under different operating conditions.

Each component in the ADH must include a name (component name) and wbs_no (WBS number identifier), and
can optionally include aliases and typed attributes organized under the Architecture, Requirements, Performance,
and Behavior categories. Strings and numbers are represented as Value Properties, while dictionaries become
Packages or Blocks, depending on the presence of a wbs_no. Units are stored for each parameter and preserved in
the SysML model. This mapping enables repeated data synchronization while maintaining the structure prescribed by
MIL-STD-881F [26]. Refer to Engelbeck et al. [27} 28] for additional information on the ADH’s development and
structure.

C. API Routines

An API synchronizes the ASOT and its respective MBSE/MDAO tool, as represented by the arrows in Fig. [I]
Each API consists of at least one function to read the ASOT and create/update the models within its tool, and at
least one function to write the changes from the tool back to the ASOT. A flowchart, illustrated in Fig. 2] further
decomposes the routines into two parts: 1) reading/writing data from/to the ASOT; and 2) transforming the data to/from
the MDAO/MBSE tool’s modeling language.

Transform Data to Model Read Data/Parameters

Model AP! ASOT
Routine

1 o —

n —

D —

O O O o—
Transform Model to Data Write Data/Parameters

Fig. 2 MBSE/MDAO API routines. Italic and underlined text represents user-initialized actions.

Regardless of the action, the engineer calls the API routines within their MDAO/MBSE tool. Prior to running each
routine, the engineer must specify the data that is to be read/written from/to the ASOT, indicated by the steps that are
italicized and underlined in Fig.[2] This step underscores that the engineer only needs to read/write the data in the
ASQOT that is pertinent to the subsystem/component that they are designing. After specifying the necessary data to be
transferred, the API routine runs without any human interaction. Should the engineer query the same data repeatedly, a
more automated API routine could be generated to access the necessary data, further facilitating rapid data transfer
between the ASOT and a given computational tool. Such automation also emphasizes the importance of devising a
consistent data schema and naming convention in the ASOT.

For this work, MSOSA supports users writing “plugin” scripts to interface with external tools or files, which serve
as the API between MSOSA and the ADH. These scripts are written in Jython|*| a programming language that embeds
Java routines into a Python-like syntax. The API between OpenMDAO and the ADH was written in Python [ﬂ

D. Framework Application for NASA’s SFNP
Using the framework components previously described, Fig. [35|summarizes the MBSE/MDAO tools coupled together,
the ASOT selected, and the coding languages utilized for the API routines.

ihttps ://www. jython.org/
Shttps://www.python.org/

https://www.jython.org/
https://www.python.org/

Downloaded by University of Michigan on January 8, 2026 | http://arc.aiaa.org | DOI: 10.2514/6.2026-1607

MBSE API:

MBSE

.y

MmeeiaEirew

MBSE API:

Read Read

ADH
ZO Jython P

MDAO API:

MDAO

I

=open/IDNO
it

MDAO API:
W

Fig. 3 MBSE-MDAO coupling framework applied to support NASA’s SFNP.

To summarize the previous sections, MSOSA and OpenMDAO serve as the MBSE and MDAO tools, respectively.

The structure of The Boeing Company’s ADH is used in the ASOT, which acts as the intermediary between MSOSA
and OpenMDAO. The API between OpenMDAO and the ADH was written using Python scripts. The API between
MSOSA and the ADH was written using Jython scripts, and is open-source *. Table|l|summarizes the five routines
shipped with the API, describing their directionality and typical uses.

Table 1 MBSE-ASOT API routines: direction and typical usage. All routines are idempotent; repeated calls

yield the same result for an unchanged ASOT.

Routine Direction Effect on ADH/MSOSA Typical Use

ReadADH ADH — MSOSA Create packages, blocks, value properties, Initialize or refresh an MSOSA model from
and requirements from the ADH (preserv- an ADH version.
ing the structure, identifiers, and units).

WriteADH MSOSA — ADH Export packages, blocks, value properties, Publish MSOSA updates to the ADH for
and requirements to the ADH. disciplinary analysis.

UpdateADH ADH — MSOSA Overwrite mismatched values in MSOSA Synchronize the system model with the

from the ADH; create a change log.

latest ADH values.

ImportStereotypes ADH — MSOSA

Generate stereotypes for ADH component
types.

Bind domain semantics to blocks for down-
stream use.

Writelnstance MSOSA — ADH

Export an Instance Specification
(slots/values) to the ADH.

Capture a configuration/baseline for review
or analysis.

Flowcharts of these five functions are illustrated in Figs. [7]through[IT]in Appendix [V.A] Along with the open-source
code in the GitHub repository *, the reader may use these flowcharts to help replicate the code for their own use in other
MBSE tools or tailor the existing code to their needs.

IV. Demonstration

A brief demonstration illustrates how data is transferred between MSOSA and the ADH. In this paper, two steps are

illustrated:

1) Importing data from the ADH to MSOSA.

2) Updating the system model in MSOSA with a modified ADH.

A more comprehensive demonstration is available online in the GitHub repository T. For the online demonstration,
more specific workflow details are included such as creating an empty system model in MSOSA, inputting the ADH file
names to import/export, and other details that distract from the overarching framework presented in this paper.

A. Importing Data from the ADH

The ADH is stored as a JSON file. Any dictionary that contains name and wbs_no key-value pairs is interpreted as a
component and mapped to a SysML Block; its container becomes a Package of the same name. Keys without a wbs_no

Downloaded by University of Michigan on January 8, 2026 | http://arc.aiaa.org | DOI: 10.2514/6.2026-1607

map to Value Properties (scalars retain units when provided). Arrays of components create Packages containing
repeated Blocks. Under this mapping, the ADH hierarchy is preserved, and identifiers remain stable for synchronization
and tracing changes. Figures[]and [5]show the ADH snippet and the resulting SysML structure, respectively.

"aircraft_system": {
"wbs_no": "1.0",
"name": “"Test Commercial Transport Aircraft",
"description"”: "Twin-engine commercial transport aircraft for testing data hierarchy",
"metadata": {
"created_by": "Aerospace Engineer",
"created date": "2025-01-07",
"version": "1.0",
"status": "draft",
"schema_version": "2.0"
}s
"adh_data": {},
"adh_root": {},
"aliases": {},
"air_vehicle": {
"wbs_no": "1.2",
"name": "Commercial Transport Air Vehicle",
"description”: "Main air vehicle assembly",

Fig. 4 ADH excerpt from a transport aircraft configuration.

&[] Model
B [aircraft_system
& [Architecture
& |=__| air_vehicle
“ [Architecture
= E air_vehicle
description : String = Main air vehicle assembly
whs_no : String = 1.2
name : String = Commercial Transport Air Vehicle
""" El adh_data
""" = adh_root
""" E] aliases
= & metadata
i~ W created_by : String = Aerospace Engineer
- version : String = 1.0
" schema_version : String = 2.0
created_date : String = 2025-01-07
‘- [status : String = draft
5 & aircraft_system
""" description : String = Twin-engine commercial transport aircraft for testing data hierarchy
whs_no : String = 1.0
o name : String = Test Commercial Transport Aircraft

Fig. 5 System model created from the ADH. Packages, Blocks, and Value Properties are represented by
folder icons, brown rectangular icons, and “V” icons, respectively.

Downloaded by University of Michigan on January 8, 2026 | http://arc.aiaa.org | DOI: 10.2514/6.2026-1607

The ReadADH function applies the mapping to instantiate the SysML model from the ADH, as illustrated in Fig. 5]
The structure of the ADH is retained in the system model via nested Packages and Blocks. Inside the Block, the
component’s name, wbs_no, and (possibly) description are stored within it as Value Properties.

Any other data pertaining to the Block, such as subsystems/components or other data, is stored within the Architecture
Package. For example, the aircraft_system has an air_vehicle as a subsystem. Since the air_vehicle also
has an Architecture folder, additional subsystems and components are stored within it, but are not explored for brevity.

Aside from the subsystems, the aircraft_system has additional data stored within its Architecture Package.
These entries highlight that Blocks may be made with an empty value, allowing data to be added to the ADH later.
Furthermore, empty Blocks have the potential to serve as placeholders for components supplied by another organization
that wishes to keep their data secret.

The system model within MSOSA is now accessible by a systems engineer to validate requirements, make design
decisions, or modify the system architecture. If any changes are made, the systems engineer may export the MSOSA
model back to the ADH, allowing disciplinary engineers to receive the updated data and, if necessary, modify their
analyses.

B. System Model Updates

After the design is iterated upon, the systems engineer will need to make updates to the system model. This is
achieved by using the UpdateADH function in the API, which scans the ADH and system model for any values that are
different. Once identified, the corresponding values in the system model are overwritten by those stored in the ADH.

Recall that the ADH acts as the ASOT and its values take precedence over those in the system model. This is
different from modifying the ADH via the system model, in which the values of the ADH are overwritten by the system
model. Although the demonstration does not highlight this step, it is included in the comprehensive demonstration
online .

Once the values in the system model are overwritten by those in the ADH, a text file is written, highlighting the
changes made to the system model. An example text file is illustrated in Fig.[6] Each section of the text file highlights a
change made to the system model, listing the qualified name of the model element changed and its prior/updated values.

Changed u'aircraft_system::Requirements::Req. Mission Segments::text' from u'The aircraft must fly
at least one climb, cruise, and descent segment.' to u'The aircraft must fly at least one climb,
two cruise segments at different altitudes, and one descent segment.'

Changed
u'aircraft_system::Architecture::air_vehicle::Architecture: :furnishings_and_equipment: :Architectur

e::seats::seats::name’ from 'seats’' to u'Seats’

Changed

u'aircraft_system::Architecture::air_vehicle::Architecture: :furnishings_and_equipment: : furnishings
_and_equipment: :name' from 'Furnishings and Equipment’ to u'Funishings and Equipment'’

Changed
u'aircraft_system::Architecture::air_vehicle::Architecture::airframe::Architecture: :components__
@::Architecture: :parameters::area::value' from 125.6 to 121.7

Changed
u'aircraft_system::Architecture::air_vehicle::Architecture: :airframe: :Architecture: :components__
0::Architecture: :parameters: :weight::value' from 2500.0 to 2464.3

Fig. 6 Values overwritten in the system model with updated values from the ADH.

Although the list of changes presented in Fig.[6]is rather simplistic for this example, this list may become excessively
large if there are hundreds of components in the system architecture, each with its own requirements and design
parameters. In operational use, the change log can be imported into a spreadsheet or dashboard for disciplinary
supervisors to review. A tabular summary (model element name, prior value, new value, unit, timestamp, author)
enables review at-scale and facilitates auditing within certification/verification workflows.

Downloaded by University of Michigan on January 8, 2026 | http://arc.aiaa.org | DOI: 10.2514/6.2026-1607

C. Computational Performance

Table 2]lists the number of model entities created/updated and the wall time to accomplish the synchronization tasks
presented in this demonstration@ The wall time was defined as the time to parse the ADH and create/update the system
model in MSOSA.

Table 2 Model synchronization summary.

Metric Model Creation Model Update

(Initial ADH — MSOSA) (Updated ADH — MSOSA)
Packages Created 44 -
Blocks Created 257 -
Value Properties Created/Updated 728 2
Requirements Parsed/Updated 5 1
Wall Time (s) 1.703 0.016

Overall, the demonstration reveals how data can be rapidly synchronized between the ADH and MSOSA while
retaining its hierarchy, identifiers, units, and requirement text.

V. Conclusions

Digital engineering efforts benefit from traceable systems models while analysis environments evolve independently
across tools and organizations. Conflicts arise if any one tool asserts itself as an ASOT. To overcome this challenge, this
paper demonstrated an externalization of the ASOT into a version-controlled schema and synchronized design data
through idempotent APIs.

The framework preserves disciplinary ownership of models and parameters while providing system-level traceability
in MBSE. Stable identifiers, explicit units and types, and auditable change logs enable deterministic synchronization
without mandating a monolithic toolchain. A concrete mapping from the ADH to SysML elements (blocks, packages,
value properties, and requirements) makes the approach reusable beyond the specific tools shown.

A demonstration conducted under NASA’s SFNP instantiated a SysML model directly from an ADH instance and
then updated that model from a modified ADH while retaining its hierarchy, identifiers, units, and requirement text.
The change log produced by the update routine provides a reviewable record suitable for program governance and
verification workflows.

The primary implication for industry adoption is reduced licensing and training burden in MBSE with improved
scalability for distributed teams. Treating the ASOT as a version-controlled artifact allows organizations to evolve
analysis toolchains and collaborate across boundaries without sacrificing traceability.

One limitation of the present API is that it assumes a single writer to the ASOT and structural parity between
SysML and ADH during updates. Future work includes three possible developments: 1) a DiffADH capability for
structural and value comparison between two ASOT versions; 2) baseline management via import/export of Instance
Specifications; and 3) schema-level invariants (e.g., JSON Schema or Object Constraint Language) to validate entries
prior to synchronization. Public adapters for MSOSA (Jython) and OpenMDAO (Python), together with documentation
and an executable demonstration, are available for adaptation to other environments.

In summary, a tool-neutral ASOT combined with disciplined synchronization closes a practical gap between MBSE
and MDAO environments, enabling repeatable and auditable workflows that align with current digital engineering
guidance while remaining economical to adopt.

Tests were performed on a desktop computer with a 13" Generation Intel Core i5-13400 processor (2.50 GHz) with 16 GB of installed RAM
(15.7 GB usable). The desktop uses a 64-bit operating system and x64-based processor while running Windows 11 Enterprise, Version 23H2, Build
22631.5189.

10

Downloaded by University of Michigan on January 8, 2026 | http://arc.aiaa.org | DOI: 10.2514/6.2026-1607

Appendix

A. API Functions
As described in Section[[ILD] five functions comprise the API linking MSOSA and the ADH. The computational
procedures for these functions are outlined using flowcharts in Figs. [7] through [T T}

T Loop through Classify
AS"A dictionary values from
keys/values dictionary

No Has No _Reserved _No Has No
i >
DUEEEIELRE array? word? WBS?
Yes Yes l Yes ‘ Yes ‘
Read values Extract Create special
from the array element package with g{,ﬁa;ﬁgcg Crsfgee\/r?lue
dictionary (dictionary) blocks/req's. 9 [ERsy
Add Add Units to
Stereotypes, the Value
if available Property
Extract Make End
dictionary additional S
from value packages P
Create Part
Property
connections

Fig.7 ReadADH computational procedure.

Get the Classify the
fllyos:lell_ model model
element element

No No

Block or Value

L)
1
1
1
—_— t?
! Package? Property? Redjt
1
: Yesl Yesl Yesl
1
1 Write entry Get Value . Eﬁ;srfment Ignore model
1 in the ADH Property a text element
1
' ' .
R T
Create
aalze <Ye_s Ay name-value
each child children? pairs
No 1
Return Write entry Ag? eu\?;?ﬁ eto prr;%
Aol in the ADH Property element

Fig.8 WriteADH computational procedure.

11

Downloaded by University of Michigan on January 8, 2026 | http://arc.aiaa.org | DOI: 10.2514/6.2026-1607

Classify

Get ADH of Loop through
the existing dictionary = values from
model keys/values dictionary

ADH from
analysis

[Read values |
from the
dictionary

4 No
Dictionary? ———e

Yes

Has No__Reserved . _NO, Has No
array? word? WBS?
Yes ‘ Yes ‘ Yes
Extract Extract
array element dictionary Co;r;pare
(dictionary) from value Vel
S R
Yes Values
equal?
No 1]

Pri

int the Modify

change <— system
made model

Fig. 9 UpdateADH computational procedure.

Loop through
dictionary = values from
keys/values dictiinary

Classify

No

o5 No Has No 5
Dictionary? == array? —_Has WBS?
Yes Yes Yes ‘
Read values Extract
from the array element Stgr:::e a
dictionary (dictionary) &8s
Add End
stereotype to dictionary
the profile readin
Extract
dictionary
from value
Fig. 10 ImportStereotypes computational procedure.
Get the Yes Classify
a;sgg Instance —» sﬁ:g? each
Specification) slot
A y
] :
1 : No
' Part No
. : Property?
1 : Yesl
Analyze the Get Instance
Instance = H Specification (;‘:g Veall‘:e
Specification : of that part gy
Write entry
in the ADH
rueesueesseessessssesnssasesasesasesasesans Return
ADH

Fig. 11 TWriteInstance computational procedure.

12

Downloaded by University of Michigan on January 8, 2026 | http://arc.aiaa.org | DOI: 10.2514/6.2026-1607

Funding Sources

This work was funded by The Boeing Company project: “Phase I Model-Based Systems Analysis and Engineering

(MBSA&E) Framework Development & Assessment for NASA Sustainable Flight National Partnership (SFNP)”. The
contract number is “SSOW-BRT-L1023-0237".

Acknowledgments

The authors want to thank Bijan Fazal, Sean Wakayama, Ron Engelbeck, Joerg Gablonsky, and Ron Plybon for

their support and valuable technical input throughout the duration of this work. The authors also acknowledge Joaquim
Martins, Safa Bakhshi, and Alexandra Kerlee for their contributions to the Python-based API between OpenMDAO and
the ADH.

(1]

2

—

13

—

[4

—_

(5

—

[6

—_

[7

—

[8

—

[9

—

(10]

(11]

(12]

(13]

[14]

References
Bussemaker, J., Boggero, L., and Nagel, B., “The AGILE 4.0 Project: MBSE to Support Cyber-Physical Collaborative
Aircraft Development,” INCOSE International Symposium, Vol. 33, Wiley Online Library, 2023, pp. 163-182. ttps:
/ldoi.org/10.1002/iis2.13015!

Delligatti, L., SysML distilled: A brief guide to the systems modeling language, Addison-Wesley, 2013.

Habermehl, C., Hopfner, G., Berroth, J., Neumann, S., and Jacobs, G., “Optimization workflows for linking model-based
systems engineering (MBSE) and multidisciplinary analysis and optimization (MDAO),” Applied Sciences, Vol. 12, No. 11,
2022, p. 5316. https://doi.org/10.3390/app12115316,

Jeyaraj, A. K., Tabesh, N., and Liscouet-Hanke, S., “Connecting Model-based Systems Engineering and Multidisciplinary
Design Analysis and Optimization for Aircraft Systems Architecting,” AIAA AVIATION 2021 FORUM, 2021, p. 3077.
https://doi.org/10.2514/6.2021-3077.

van Gent, 1., and La Rocca, G., “Formulation and integration of MDAO systems for collaborative design: A graph-based
methodological approach,” Aerospace Science and Technology, Vol. 90, 2019, pp. 410-433. https://doi.org/10.1016/j.ast.2019
04.039.

Ciampa, P. D., Prakasha, P. S., Torrigiani, F., Walther, J.-N., Lefebvre, T., Bartoli, N., Timmermans, H., Della Vecchia, P.,
Stingo, L., Rajpal, D., et al., “Streamlining cross-organizational aircraft development: results from the AGILE project,” AIAA
Aviation 2019 Forum, 2019, p. 3454. https://doi.org/10.2514/6.2019-3454,

Ciampa, P. D., and Nagel, B., “Accelerating the Development of Complex Systems in Aeronautics via MBSE and MDAO: a
Roadmap to Agility,” AIAA Aviation 2021 Forum, 2021, p. 3056. |https://doi.org/10.2514/6.2021-3056.

Lupp, C. A., Kao, J. Y., Novotny, N., Wontor, T., Xu, A., Singleton, J., and Sandler, D. A., “A Theoretical Foundation and
Practical Demonstration of Integrating MDO, MBSE and the Digital Thread,” AIAA SciTech Forum, 2026.

Kolonay, R. M., “MDAO - An Air Force Perspective,” , 2021. URL |https://www.phoenix-int.com/wp-content/uploads/2021/01/
Kolonay_ PIMDAOEvent2021Rev3.pdf.

Lupp, C. A, and Xu, A., “Creating a Universal Communication Standard to Enable Heterogeneous Multidisciplinary Design
Optimization,” AIAA SCITECH Forum, 2024, p. 1799. |https://doi.org/10.2514/6.2024-1799.

Alder, M., Moerland, E., Jepsen, J., and Nagel, B., “Recent advances in establishing a common language for aircraft design
with CPACS,” , 2020. URL https://www.researchgate.net/profile/Marko- Alder-2/publication/344346475_Recent_Advances_|
in_Establishing_a_Common_Language_for_Aircraft Design_with_ CPACS/links/678184023e33dd0be917264c/Recent-
Advances-in-Establishing-a-Common-Language- for- Aircraft- Design- with- CPACS.pdf.

van Gent, 1., La Rocca, G., and Hoogreef, M. E., “CMDOWS: a proposed new standard to store and exchange MDO systems,”
CEAS Aeronautical Journal, Vol. 9, No. 4, 2018, pp. 607—627. https://doi.org/10.1007/s13272-018-0307-2.

Ciampa, P. D., La Rocca, G., and Nagel, B., “A MBSE approach to MDAO systems for the development of complex products,”
AIAA Aviation 2020 Forum, 2020, p. 3150. https://doi.org/10.2514/6.2020-3150.

Aiello, O., Kandel, D. S. D. R., Chaudemar, J.-C., Poitou, O., and de Saqui-Sannes, P., “Populating MBSE models
from MDAO analysis,” 2021 IEEE International Symposium on Systems Engineering (ISSE), IEEE, 2021, pp. 1-8.
https://doi.org/10.1109/ISSE51541.2021.9582519.

13

https://doi.org/10.1002/iis2.13015
https://doi.org/10.1002/iis2.13015
https://doi.org/10.3390/app12115316
https://doi.org/10.2514/6.2021-3077
https://doi.org/10.1016/j.ast.2019.04.039
https://doi.org/10.1016/j.ast.2019.04.039
https://doi.org/10.2514/6.2019-3454
https://doi.org/10.2514/6.2021-3056
https://www.phoenix-int.com/wp-content/uploads/2021/01/Kolonay_PIMDAOEvent2021Rev3.pdf
https://www.phoenix-int.com/wp-content/uploads/2021/01/Kolonay_PIMDAOEvent2021Rev3.pdf
https://doi.org/10.2514/6.2024-1799
https://www.researchgate.net/profile/Marko-Alder-2/publication/344346475_Recent_Advances_in_Establishing_a_Common_Language_for_Aircraft_Design_with_CPACS/links/678184023e33dd0be9f7264c/Recent-Advances-in-Establishing-a-Common-Language-for-Aircraft-Design-with-CPACS.pdf
https://www.researchgate.net/profile/Marko-Alder-2/publication/344346475_Recent_Advances_in_Establishing_a_Common_Language_for_Aircraft_Design_with_CPACS/links/678184023e33dd0be9f7264c/Recent-Advances-in-Establishing-a-Common-Language-for-Aircraft-Design-with-CPACS.pdf
https://www.researchgate.net/profile/Marko-Alder-2/publication/344346475_Recent_Advances_in_Establishing_a_Common_Language_for_Aircraft_Design_with_CPACS/links/678184023e33dd0be9f7264c/Recent-Advances-in-Establishing-a-Common-Language-for-Aircraft-Design-with-CPACS.pdf
https://doi.org/10.1007/s13272-018-0307-2
https://doi.org/10.2514/6.2020-3150
https://doi.org/10.1109/ISSE51541.2021.9582519

Downloaded by University of Michigan on January 8, 2026 | http://arc.aiaa.org | DOI: 10.2514/6.2026-1607

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

Hossain, N. U. L., Lutfi, M., Ahmed, 1., Akundi, A., and Cobb, D., “Modeling and analysis of unmanned aerial vehicle
system leveraging systems modeling language (SysML),” Systems, Vol. 10, No. 6, 2022, p. 264. https://do1.org/10.3390/
systems 10060264,

Aiello, O., Poitou, O., Chaudemar, J.-C., and De Saqui-Sannes, P., “Sizing a Drone Battery by coupling MBSE and MDAO,”
11th European Congress Embedded Real Time Systems (ERTS) 2022, 2022, p. 03740634.

Bussemaker, J., Boggero, L., and Ciampa, P. D., “From system architecting to system design and optimization: A link
between MBSE and MDAO,” INCOSE International Symposium, Vol. 32, Wiley Online Library, 2022, pp. 343-359.
https://doi.org/10.1002/iis2.12935.

Bruggeman, A.-L. M., and La Rocca, G., “From requirements to product: An MBSE approach for the digitalization of
the aircraft design process,” INCOSE International Symposium, Vol. 33, Wiley Online Library, 2023, pp. 1688-1706.
https://doi.org/10.1002/iis2.13107.

Chaudemar, J.-C., and de Saqui-Sannes, P., “MBSE and MDAO for early validation of design decisions: a bibliography survey,”
2021 IEEE International Systems Conference (SysCon), IEEE, 2021, pp. 1-8. https://doi.org/10.1109/SysCon48628.2021,
9447140.

Swaminathan, R., Sarojini, D., and Hwang, J. T., “Integrating mbse and mdo through an extended requirements-functional-
logical-physical (rflp) framework,” AIAA AVIATION 2023 Forum, 2023, p. 3908. https://doi.org/10.2514/6.2023-3908.

Institut Mines-Télécom, “TTool,” , 2016. URL https://gitlab.telecom-paris.fr/mbe-tools/TTool/.

Bruggeman, A.-L., van Manen, B., van der Laan, T., vanden Berg, T., and La Rocca, G., “An MBSE-based requirement verification
framework to support the MDAO process,” AIAA Aviation 2022 Forum, 2022, p. 3722. |https://doi.org/10.2514/6.2022-3722|

Office of the Under Secretary of Defense for Research and Engineering, “DOD Instruction 5000.97 - Digital Engineering,”, 2023.
URL https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500097p.PDF?ver=be PIgKXaLUTK_[u5iTNREwY%o
3D%3D.

Gray, J. S., Hwang, J. T., Martins, J. R. R. A., Moore, K. T., and Naylor, B. A., “OpenMDAO: An open-source framework for
multidisciplinary design, analysis, and optimization,” Structural and Multidisciplinary Optimization, Vol. 59, No. 4, 2019, pp.
1075-1104. https://doi.org/10.1007/s00158-019-02211-z,

The Boeing Company, “Aircraft Data Hierarchy,” , 2025. URL https://github.com/Boeing/aircraft-data-hierarchy,

United States Department of Defense, “Work Breakdown Structures for Defense Materiel Items,” , 2022. URL https:
/Iquicksearch.dla.mil/qsdocdetails.aspx ?ident_number=36026.

Engelbeck, R. M., Ocampo, E., Gablonsky, J., Shi, M., Wakayama, S., Carrere, A., Plybon, R., Refford, M., Mokotoff, P. R.,
Bakhshi, S., Kerlee, A., Cinar, G., and Martins, J., “Model-Based Systems Analysis and Engineering: Aircraft Data Hierarchy,”
Tech. Rep. NASA/CR-20250007045, National Aeronautics and Space Administration, 2025. https://ntrs.nasa.gov/api/citations/
20250007045/downloads/CR-20250007045.pdf.

Engelbeck, R., Shi, M., Gablonsky, J., Ocampo, E., Wakayama, S., and Carrere, A., “The Aircraft Data Hierarchy: A Modern
Aircraft Configuration Data Standard,” AIAA SciTech Forum, 2026.

14

https://doi.org/10.3390/systems10060264
https://doi.org/10.3390/systems10060264
https://doi.org/10.1002/iis2.12935
https://doi.org/10.1002/iis2.13107
https://doi.org/10.1109/SysCon48628.2021.9447140
https://doi.org/10.1109/SysCon48628.2021.9447140
https://doi.org/10.2514/6.2023-3908
https://gitlab.telecom-paris.fr/mbe-tools/TTool/
https://doi.org/10.2514/6.2022-3722
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500097p.PDF?ver=bePIqKXaLUTK_Iu5iTNREw%3D%3D
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500097p.PDF?ver=bePIqKXaLUTK_Iu5iTNREw%3D%3D
https://doi.org/10.1007/s00158-019-02211-z
https://github.com/Boeing/aircraft-data-hierarchy
https://quicksearch.dla.mil/qsdocdetails.aspx?ident_number=36026
https://quicksearch.dla.mil/qsdocdetails.aspx?ident_number=36026
https://ntrs.nasa.gov/api/citations/20250007045/downloads/CR-20250007045.pdf
https://ntrs.nasa.gov/api/citations/20250007045/downloads/CR-20250007045.pdf

	Introduction
	Engineering Computational Tool Couplings in the Literature
	Strong Coupling
	Weak Coupling

	Industry Perspectives on Engineering Tool Couplings
	Gaps Between Industry and Academic Practices

	Objective: A Bridge to Couple MBSE and MDAO Tools
	MBSE-MDAO Coupling Framework
	MBSE-MDAO Interactions
	ASOT Structure
	API Routines
	Framework Application for NASA's SFNP

	Demonstration
	Importing Data from the ADH
	System Model Updates
	Computational Performance

	Conclusions
	API Functions

