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Abstract—Hybrid-Electric Aircraft (HEA) present a potential
pathway to enhance propulsive efficiency and reduce operating
costs in regional airline operations. This study introduces an
adaptive power management strategy that optimizes allocation
of electric and gas turbine engine power across sequential daily
flights while addressing operational constraints such as limited
gate charging durations and available ground time. HEA models
are developed using physics-based and data-driven methods
within the open-source Future Aircraft Sizing Tool (FAST). In
contrast to prior studies that rely on fixed power splits or
single-mission strategies, the proposed approach dynamically
adjusts power distribution across mission phases to maximize
efficiency and performance over a range of missions. Key findings
indicate that sequence-optimized power management can achieve
approximately a 2–3% reduction in fuel burn compared to a
conventional baseline, utilizing conservative battery technology
assumptions of 250 Wh/kg pack-level specific energy and a 150
kW charging power limit. The study also finds that optimizing
power allocation across a full day of operations yields greater
benefits than optimizing each flight independently. These results
demonstrate the feasibility of HEA integration into regional
airline markets, offering improved operational efficiency and
cost savings while maintaining compatibility with existing fleet
schedules.

Index Terms—hybrid electric aircraft, electrified propulsion,
power management optimization, charging strategies

I. INTRODUCTION

Hybrid-Electric Aircraft (HEA) present a promising alter-
native to conventional aircraft by offering improved fuel effi-
ciency and reduced operating costs [1], [2]. However, effective
HEA design must integrate operational constraints during the
early stages of aircraft design to ensure compatibility with
existing airline fleets. A significant challenge arises from the
current battery technology, whose specific energy (0.2-0.25
kWh/kg) is nearly 50 times lower than that of jet fuel ( 11.9
kWh/kg). This limitation necessitates an optimization-focused
design approach that identifies the most effective use cases
and operational strategies.

This work was supported by RTX under the Aircraft Design for Fleet
Operations project.

The regional jet market is particularly promising for HEA
integration due to its shorter-range missions, which align
with moderate battery use [3]–[5]. Nonetheless, replacing
conventional aircraft with HEA on regional routes may incur
higher costs for airlines unless substantial fuel savings are
achieved [6], [7]. In parallel hybrid-electric architectures,
strategies that reduce engine takeoff power by incorporating
brief periods of electric motor boost can decrease fuel con-
sumption [8]. Yet, without an adaptive power management
strategy, increasing the extent of electrification beyond the
takeoff phase typically results in higher energy requirements,
necessitating heavier batteries [1]. This increase in battery
weight consequently elevates the aircraft’s gross takeoff weight
and further amplifies energy demands to meet performance
targets. Moreover, constraints on gate charging durations, im-
posed to maintain conventional turnaround times, can further
mitigate the benefits of enhanced hybridization [9].

Current research on power management for midsize to large
HEA primarily focuses on propulsion architecture types and
charge-depleting/sustaining strategies [10]–[12]. This paper
exclusively examines parallel-hybrid electric, charge-depleting
aircraft and concentrates on the effects of adaptive power
management optimization during flight. Although sequential
flight adaptive power management and charging strategies have
been explored for UAVs [13]–[15], the distinct operational
characteristics of regional HEA—such as larger battery ca-
pacities, higher payloads, longer ranges, and reduced opera-
tional flexibility—preclude direct application of UAV strate-
gies. Consequently, a dedicated study on power management
strategies for regional HEA is essential in the context of
aircraft performance, propulsion system efficiency, and airline
operations.

Previous work by the authors developed conventional
and parallel-hybrid electric aircraft models based on the
ERJ175LR regional jet using the Future Aircraft Sizing Tool
(FAST) [9]. Analysis of regional airline route data from the
Bureau of Transportation Statistics over a sequence of flights
for a single tail number highlighted the impact of limited



gate time on charging feasibility. The findings revealed that
hybridizing takeoff phase alone achieved approximately 2–3%
fuel savings over conventional counterparts, while including
climb hybridization imposed excessive battery weight, thereby
resulting in higher fuel consumption than conventional aircraft.
These outcomes were largely attributed to the use of a lower-
fidelity engine model in the previous study. In this work,
the engine model fidelity has been improved using the ICAO
engine database method as detailed in [16].

The objective of this study is to develop an adaptive power
management strategy for regional HEA that optimizes in-
flight power distribution and ground charging across a se-
quence of flights. By dynamically allocating power between
the electric motor and gas turbine engine during various
mission phases, rather than relying on fixed power splits, the
proposed strategy addresses constraints on gate charging with
limited ground time. Leveraging sequential flight data, this
study fills a critical gap in current HEA literature—which has
predominantly focused on single-mission or constant power
strategies—offering a scalable framework for integrating HEA
into regional operations by reducing fuel consumption and
enhancing fleet compatibility.

II. TECHNICAL APPROACH

This section describes the technical methods used to develop
the aircraft models, implement adaptive power management
and dynamic battery charging strategies, and formulate both
single-mission and sequence-based optimization problems.

A. Model Development and Design Mission Profile

Both conventional ERJ175LR and the HEA models were
developed and analyzed using FAST1, which is an open-
source, MATLAB-based aircraft sizing tool for designing and
analyzing conventional and electrified aircraft concepts across
any propulsion architecture [16]. These models were sized on
the design mission based on a notional ERJ175LR mission,
as illustrated in Fig. 1. Each flight segment is defined by
specified airspeeds and altitudes consistent with the ERJ175
mission profile (Table I). The mission profile includes a reserve
mission to determine the required fuel capacity in compliance
with FAA safety regulations [17]. For further details on the
ERJ175LR model development, see [9].

TABLE I
MISSION PROFILE ASSUMPTIONS.

Segment Value Main Mission Reserve
Takeoff TAS (m/s) 69.5 -
Climb EAS (m/s) 102.9 102.9
Cruise TAS (m/s) 231.3 128.6
Cruise Altitude (m) 10668 3048
Descent EAS (m/s) 108.0 102.9
Landing TAS (m/s) - 83.3

The HEA model integrates a parallel-hybrid propulsion
architecture, illustrated in Fig. 2, into a twin-fan aircraft, with
one battery back powering both electric motors. Hybridization
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Fig. 1. Schematic of full mission profile in FAST.

is applied exclusively during takeoff and climb. The power
outputs of the gas turbine engine (GT) and electric motor (EM)
during climb are controlled via a throttle setting, or power code
(PC), defined in 1. In off-design operations—where the aircraft
design remains the same, but payload, range, and altitude
targets differ from the design mission—the PC is used as an
optimization variable to set the climb power output, allowing
FAST to iteratively evaluate climb performance based on this
control strategy. Takeoff always employs full throttle, ensuring
maximum PC from all engines. Off-design missions follow the
previously defined mission profile but adjust the design range
and altitude to match the desired route, and all include the
same reserve mission as shown in Fig. 1 and Table I.
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Fig. 2. Parallel-hybrid propulsion architecture.

Pout = PCPav. (1)

The following sections describe two optimization problems:
one for single-mission power management and another for
sequential-flight optimization that considers the effects of
charging in between each flight. In both cases, FAST is treated
as a black-box model, and finite difference methods are used
for differentiation.

B. Single Mission Optimizer

The single-mission optimizer minimizes the block fuel burn
(Wf ) by adjusting the power codes for the gas turbine engine
PCGT,i and the electric motor PCEM,i, where i denotes the
i-th point in the discretized mission profile. During takeoff,
both power sources operate at full throttle, while during climb
the power codes vary continuously between 0% and 100%.
Critical constraints include (i) maintaining the State of Charge



(SOC) between 20% and 100% to ensure battery safety,
(ii) limiting Rate of Climb (RC) to a prescribed maximum
(RCmax) to maintain passenger comfort, (iii) ensuring that
the required power to fly the given trajectory (Preq) does
not exceed available power (Pav) from the propulsors, and
(iv) keeping the takeoff gross weight (TOGW ) within the
maximum takeoff weight (MTOW ) of the aircraft. The opti-
mization problem statement is outlined below.

minimize Wf

by varying PCEM,i, PCGT,i,

subject to 0% ≤ PCEM,i ≤ 100%, 0% ≤ PCGT,i ≤ 100%,

20% ≤ SOC ≤ 100%, TOGW ≤ MTOW,

Preq,i ≤ Pav,i, RCi ≤ RCmax.
(2)

The optimization problem employs FAST with Matlab’s
fmincon function, utilizing nonlinear inequality constraints to
solve for minimum fuel burn [18]. Interior-point method was
chosen as the optimization algorithm due to its effectiveness
in managing a large number of design variables, implementing
non-linear constraints, converging even from an infeasible
starting point, and locating the global minimum [19].

C. Sequence Optimizer

The sequence optimizer extends the single-mission approach
to a full day of operations by optimizing the climb power codes
for every mission in a flight sequence. An example sequence
is illustrated in Fig. 3, which shows the design variable
placements (PCs) across the discretized mission profiles and
the time spent at the gate, partitioned into a fixed refueling
period (first five minutes) and a subsequent charging period.
The refueling time is estimated using a typical refueling truck
fuel flow rate of 1000 kg/min for Jet A fuel [20].
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Fig. 3. Example sequence mission profile with discretized climb segment.

The sequence-based optimization problem is summarized
below. Its objective is to minimize the total daily fuel burn by
accounting for energy usage in each flight and adjusting the
SOC for subsequent missions through the charging phase. This
formulation allows the optimizer to balance energy depletion
with battery state without imposing a fixed SOC threshold at
the end of each mission. In this notation, k represents the

mission number, ranging from 1 to n, where n is the total
number of flights in the sequence.

minimize
n∑

k=1

Wf,k

by varying PCEM,k,i, PCGT,k,i,

subject to 0% ≤ PCEM,k,i ≤ 100%, 0% ≤ PCGT,k,i ≤ 100%,

20% ≤ SOCk ≤ 100%, TOGWk ≤ MTOW,

Preq,k,i ≤ Pav,k,i, RCk,i ≤ RCmax.
(3)

D. Updates to FAST’s Battery Model

This section summarizes the modifications implemented in
FAST’s battery model, which now incorporates maximum
discharge rate checks during battery sizing and features a more
realistic charging model. The specifications for the chosen
Lithium-ion battery is given in Table II.

TABLE II
RECHARGEABLE LI-ION BATTERY PARAMETERS.

Parameter Value Unit
Cell Nominal Voltage (Vnom) 3.6 V
Cell Maximum Capacity (Qmax) 3 Ah
Battery Specific Energy (ebatt) 250 Wh/kg
System Voltage (Vsystem) 223.2 V
Maximum Allowable C-rate (Cmax) 5 C
Minimum SOC threshold 20 %
Cell Internal Resistance 0.0199 Ω
Cell Maximum Extracted Voltage 4.0880 V
Number of Cells in Series (Nser) 62 cells
Number of Cells in Parallel (Npar) 372 cells

1) Battery Sizing Methodology: Battery sizing critically
affects the aircraft gross weight, feasibility of the hybridization
strategy, and the operational flexibility. In this study, the
battery pack is sized iteratively within the aircraft sizing loop
based on both the energy and power requirements of the design
mission. First, the desired system voltage (Vsystem) and the
nominal cell voltage (VNom), determine the number of cells
in series (Nser):

Nser =
Vsystem

VNom
. (4)

During aircraft sizing, the total required battery energy
(Ereq) and the maximum required battery power (Pmax) are
computed from mission analysis. For the power-based sizing,
the maximum allowable discharge current (Imax,cell) is given
by

Imax,cell = Cmax ·Qmax, (5)

which in turn is used to determine the number of parallel cells
needed for power (Npar,power):

Npar,power =
Pmax

Vnom ·Nser · Imax,cell
. (6)



Similarly, the number of cells in parallel based on the energy
requirement, Npar,energy , is

Npar,energy =
Ereq

Vnom ·Nser ·Qmax
. (7)

The final battery pack design uses the most restrictive (largest)
value, ensuring both energy and power criteria are met:

Npar = max(Npar,power, Npar,energy). (8)

An empirical equivalent circuit model captures the battery
discharging dynamics by incorporating the open-circuit volt-
age (OCV) as a function of SOC, internal resistance, dis-
charging current, polarization effects, and exponential voltage
decay [9], [21]. The battery cell voltage during discharge is
given by 9:

Vdisc = V0−(
K ·Q

Q−Qact
)(Qact+I∗)−R·I+Ae−B·Qact , (9)

where Vdisc is the battery voltage, V0 is the battery constant
voltage, Q is the battery capacity, Qact is the battery actual
capacity, R is the internal resistance, I is the battery current,
I∗ is the filtered current, A is the exponential zone amplitude,
B is the exponential zone time constant inverse, and K is the
polarization constant.

2) Charging Strategy: A constant-power to taper charging
strategy is implemented to reflect realistic HEA charging
constraints during sequential flight operations. The charging
profile is defined as:

Wch =

{
Wmax, if 20% ≤ SOC ≤ 80%,

Wmax × 100−SOC
r , if 80% < SOC ≤ 100%,

(10)
where r, the SOC taper coefficient, was set to 20. Fig. 4

illustrates the charging profile.

Fig. 4. Sample charging profile demonstrating constant power below 80%
SOC, followed by a tapered regime to protect battery health.

III. RESULTS

This section presents the sizing outcomes of the aircraft
models, verifies the optimizer convergence, and compares
airline sequence case studies from 2019 Mesa Airlines to
evaluate HEA performance against a conventional baseline
model of the ERJ175.

A. Model Design

Two aircraft models were developed based on the
ERJ175LR top-level and mission performance requirements,
as shown in Table III. The HEA battery is based on current bat-
tery technology and has a specific energy of 250 kWh/kg [22].
The propulsion system of the HEA model is sized based on
sea-level static (SLS) takeoff conditions, where 10% of the
required power is provided by the electric motor, with the gas
turbine supplying the remaining 90%, with both operating at
maximum power code. During climb, the gas turbine continues
at its maximum continuous power while the EM’s power code
is reduced to 30%. Sensitivity studies indicated that a higher
EM share at takeoff would result in an undersized GT for
cruise performance, and a climb power code exceeding 30%
would necessitate an impractically heavy battery. The resulting
battery pack design, assuming a system voltage of 223V, is
given in Table II.

TABLE III
CONVENTIONAL (CONV.) AND HEA TLARS AND SPECIFICATIONS.

Group Specification Conv. HEA

ERJ175LR
TLARs
and
Specifications

Design Range (nmi) 2150 2150
Max Passengers 78 78
Thrust-to-Weight Ratio 0.339 0.339
Cruise Mach 0.78 0.78
Wing Loading (kg/m2) 533.4 533.4
Cruise L/D 15.2 15.2
Max RC (m/s) 11.43 11.43

Sized
Aircraft
Parameters

MTOW (kg) 38,637 41,147
Empty Weight (kg) 21,545 23,093
Block Fuel (kg) 9,397 9,364
Battery Weight (kg) – 996.4
Total SLS Thrust (kN) 123.4 131.5
SLS Engine Thrust (kN) 61.7 59.2
Wing Area (m2) 72.4 77.2
Avg Takeoff Engine TSFC [kg/(kN·h)] 39.12 31.92
Avg Cruise Engine TSFC [kg/(kN·h)] 70.62 65.08
EM Power (kW) – 913.0
Battery Energy (kWh) – 249.1

B. Optimizer Verification

To verify the single-mission optimizer, a 1000 nmi off-
design mission was used to assess whether fuel burn could be
further reduced with adaptive power management while main-
taining flight feasibility. A sensitivity study of varying input
design variables confirmed that, within feasible bounds, the
optimizer converged to the same optimal power management
strategy (Table IV). Compared to an HEA using the original
design power codes, the optimized HEA reduced fuel burn by
1.7%.

Fig. 5 depicts the climb power codes from the sized HEA
model, which served as the initial design variables set as a
function of climb altitude. The optimizer adjusted the GT
and EM power codes while ensuring the GT could support
the mission climb and the EM could operate between full
throttle and off. Fig. 6 shows that the optimal solution adopts
an on-off-on EM strategy, providing an additional boost at
higher altitudes to expedite the climb and reach cruise more
efficiently.
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Fig. 5. Climb power codes from HEA model sized on design mission.

TABLE IV
INITIAL DESIGN VARIABLE CONVERGENCE SENSITIVITY STUDY.

Initial Design Variables (%) Min Fuel Battery Energy
EM PC GT PC Burn (kg) Used (kWh)

Design PC Design PC 3,800.96 195
100 100 3,800.96 195
50 100 3,800.96 195
0 100 3,800.96 195
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Fig. 6. Optimized climb power codes for a 1000 nmi mission.

C. Sequence Performance Comparison

The sequence in Table V was selected from Mesa Airlines
January 2019 flight data to capture diverse mission lengths and
limited turnaround times [9]. Specifically, the first two flights
are both long, testing whether the battery can be recharged
sufficiently between them given minimal ground time. The
schedule then includes two shorter flights followed by another
long flight, further highlighting how varying mission lengths
and charging intervals affect overall performance. The first
flight begins at 100% SOC to represent overnight charging,
and each airport is assumed to have a 150 kW charger,
a realistic assumption considering current DC fast-charging
technology [23].

Four test cases were examined to evaluate power manage-
ment strategies, optimizer performance, and HEA benefits over
its conventional counterpart:
• Case 1. HEA with power codes optimized across the entire

sequence using 3.
• Case 2. HEA with power codes optimized for each individ-

ual missions and inter-flight charging using 2.

TABLE V
SELECTED REGIONAL AIRLINE SEQUENCE TO TEST AIRCRAFT

OPERATIONAL PERFORMANCE.

Flight 1 2 3 4 5
Origin IAH PHL IAH MEM IAH
Destination PHL IAH MEM IAH TUS
Distance (nmi) 1,151 1,151 406.7 406.7 813.4
Cruise Altitude (m) 10365 10365 9,144 9,144 10365
Time at Gate (min) 0 37 65 53 50

• Case 3. HEA using the original design power codes kept
constant for all missions.

• Case 4. Conventional baseline model.

The total fuel burn and battery energy used for each case
are reported in Table VI. Case 1 yields the lowest fuel burn
and highest battery usage, while Case 3 saves only 1% fuel
over the conventional baseline, highlighting the importance of
optimized power management strategy for HEA operations.

TABLE VI
FUEL AND BATTERY ENERGY CONSUMPTION OF CASES ON TEST

SEQUENCE.

Total Fuel Fuel Burn % Total Battery
Case Burn (kg) Diff wrt Case 4 Energy Used (kWh)

Case 1 14,678 -2.99 636.1
Case 2 14,697 -2.87 635.3
Case 3 14,974 -1.04 556.6
Case 4 15,131 - -

Fig. 7 compares the design variables and SOC profiles
across the sequence. In Cases 1 and 2, the EM operates at full
throttle early in the climb and again near the top of climb to
support the GT, which experienced reduced power available
at higher altitudes. Table VII summarizes the corresponding
climb and flight times. In contrast, Case 3, which uses a
constant 30% EM power, lacks sufficient top of climb boost,
leading to a shallower, longer climb and higher total fuel burn.
All HEA cases maintain a higher GT power code than the
conventional baseline (Case 4). Although the HEA carries
additional battery weight, the enhanced cruise efficiency of
the smaller engine more than compensates for this penalty,
resulting in lower overall fuel consumption.

TABLE VII
TIME TO CLIMB AND FLY THE MISSION FOR EACH FLIGHT IN EACH CASE,

PRESENTED IN MINUTES AS: CLIMB TIME; FLIGHT TIME.

Case 1 Case 2 Case 3 Case 4
Flight 1 20.9 ; 171 20.4 ; 171 23.0 ; 172 20.3 ; 171
Flight 2 21.1 ; 171 22.5 ; 171 23.0 ; 172 20.3 ; 171
Flight 3 16.3 ; 68.3 16.2 ; 68.3 16.9 ; 68.5 16.1 ; 68.1
Flight 4 16.3 ; 68.3 16.2 ; 68.3 20.6 ; 69.8 16.1 ; 69.0
Flight 5 19.7 ; 125 20.3 ; 125 21.8 ; 125 19.6 ; 124

Between the two optimized approaches, Case 1 achieves
greater fuel savings by prioritizing an 80% SOC before each
flight. In contrast, Case 2 fully depletes the battery (to 20%
SOC) on the first flight, leaving insufficient ground time to
recharge beyond 55% SOC for the second flight. Consequently,
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Fig. 7. Power codes and SOC for each case on the sequence.

the EM cannot provide as much support during subsequent
climbs, leading to a higher overall fuel burn than Case 1.

D. Future Technology Comparison

Under current battery technology, the HEA incurs a sig-
nificant weight penalty, limiting its fuel-burn advantage. To
explore the impact of improved batteries, a new HEA model
was sized for the same TLARs and design mission, with a
500 Wh/kg battery. The resulting advanced HEA is summa-
rized in Table VIII.

TABLE VIII
ADVANCED HEA SIZED WITH 500 WH/KG BATTERY ASSUMPTION.

% Change Over
Specifications Value Conventional Current HEA
MTOW (kg) 38,244 -1.02 -7.06
Empty Weight (kg) 21,065 -2.23 -8.78
Block Fuel(kg) 9,027 -3.94 -3.60
Battery Weight (kg) 458.0 - -54.03
Total SLS Thrust (kN) 122.2 -0.97 -7.09
SLS Engine Thrust (kN) 55.0 -10.86 -7.09
Wing Area (m2) 71.7 -0.97 -7.12
EM Power (kW) 848.5 - -7.06
Battery Energy (kWh) 229.0 - -8.03

When optimized over the same sequence with a high battery
charging rate assumption of 500 kW, this advanced HEA
reduced total fuel burn to 13,992 kg, which is -7.53% over
Case 4 and -4.67% over Case 1, while using 892 kWh
of battery energy. The power management of the optimized
advanced and current technology HEA (Case 1) is compared in
Fig. 8. The advanced HEA has an almost fully charged battery

after every mission and uses higher electric motor power for
longer during climb. This study shows that future technology
levels will yield larger fuel burn reductions, and that power
management optimization remains crucial to maximize the
benefits because the mission profiles can vary widely. [24]
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IV. CONCLUSIONS

This study demonstrates that an adaptive power manage-
ment strategy—one that dynamically allocates electric and gas
turbine engine power across sequential flights—can achieve
a 2–3% reduction in fuel burn compared to conventional
configurations. By integrating aircraft sizing with realistic op-
erational constraints, including limited gate charging durations
and variable mission profiles, the proposed approach enhances
overall propulsive efficiency despite the additional battery
weight imposed by current technology. Improved engine mod-
eling using the ICAO engine database further strengthens these
findings by enabling more accurate predictions of climb and
cruise performance.

The results indicate that HEA can be feasibly integrated into
regional airline fleets without disrupting existing operations,
provided that power management is optimized to balance
energy depletion and battery state effectively. Moreover, even
though the cruise phase does not operate in hybrid mode, the
efficient operation of a downsized engine at higher throttle
settings compensates for the battery weight penalty, yielding
significant fuel savings during the dominant cruise segment.

Future work will extend this work to minimize operating
cost while accounting for battery degradation and replacement
costs. Such enhancements will further clarify the economic
viability of HEA and support their adoption as a competitive
alternative to conventional aircraft in regional operations.
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